Loading…

Identification of ambiguous queries in web search

It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clari...

Full description

Saved in:
Bibliographic Details
Published in:Information processing & management 2009-03, Vol.45 (2), p.216-229
Main Authors: Song, Ruihua, Luo, Zhenxiao, Nie, Jian-Yun, Yu, Yong, Hon, Hsiao-Wuen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853
cites cdi_FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853
container_end_page 229
container_issue 2
container_start_page 216
container_title Information processing & management
container_volume 45
creator Song, Ruihua
Luo, Zhenxiao
Nie, Jian-Yun
Yu, Yong
Hon, Hsiao-Wuen
description It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clarify the definition of ambiguous queries by constructing the taxonomy of queries from being ambiguous to specific. Second, we ask human annotators to manually classify queries. From manually labeled results, we observe that query ambiguity is to some extent predictable. Third, we propose a supervised learning approach to automatically identify ambiguous queries. Experimental results show that we can correctly identify 87% of labeled queries with the approach. Finally, by using our approach, we estimate that about 16% of queries in a real search log are ambiguous.
doi_str_mv 10.1016/j.ipm.2008.09.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57744805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306457308000903</els_id><sourcerecordid>1651070111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwA9giJNgSrl9xLCZU8ahUiQVmy7VvwFGaFDsF8e9JacXAwOTl-NxPh5BzCgUFWl43RVivCgZQFaALAHlAJrRSPJdc0UMyAQ5lLqTix-QkpQYAhKRsQujcYzeEOjg7hL7L-jqzq2V43fSblL1vMAZMWeiyT1xmCW10b6fkqLZtwrP9OyUv93fPs8d88fQwn90ucjeah9zrkikmPANhQQsJS6Ral9qz0jmreO1EJShzjJcSRbWUHLz01mmuLfpK8im52nnXsR-HpMGsQnLYtrbDcZyRSglRwRa8-AM2_SZ24zZDtdC00pKOEN1BLvYpRazNOoaVjV-GgtkWNI0ZC5ptQQPawI_4ci-2ydm2jrZzIf1-ZJRVQgk1cjc7DsccHwGjSS5g59CHiG4wvg__XPkGRwGDyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194918951</pqid></control><display><type>article</type><title>Identification of ambiguous queries in web search</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>ScienceDirect Journals</source><creator>Song, Ruihua ; Luo, Zhenxiao ; Nie, Jian-Yun ; Yu, Yong ; Hon, Hsiao-Wuen</creator><creatorcontrib>Song, Ruihua ; Luo, Zhenxiao ; Nie, Jian-Yun ; Yu, Yong ; Hon, Hsiao-Wuen</creatorcontrib><description>It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clarify the definition of ambiguous queries by constructing the taxonomy of queries from being ambiguous to specific. Second, we ask human annotators to manually classify queries. From manually labeled results, we observe that query ambiguity is to some extent predictable. Third, we propose a supervised learning approach to automatically identify ambiguous queries. Experimental results show that we can correctly identify 87% of labeled queries with the approach. Finally, by using our approach, we estimate that about 16% of queries in a real search log are ambiguous.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2008.09.005</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Ambiguity ; Ambiguous query ; Broad topics ; Classification ; Exact sciences and technology ; Information and communication sciences ; Information processing and retrieval ; Information retrieval. Man machine relationship ; Information science. Documentation ; Learning ; Query classification ; Query formulation ; Query taxonomy ; Research process. Evaluation ; Sciences and techniques of general use ; Search engines ; Studies</subject><ispartof>Information processing &amp; management, 2009-03, Vol.45 (2), p.216-229</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Mar 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853</citedby><cites>FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,34114,34115</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21284747$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Ruihua</creatorcontrib><creatorcontrib>Luo, Zhenxiao</creatorcontrib><creatorcontrib>Nie, Jian-Yun</creatorcontrib><creatorcontrib>Yu, Yong</creatorcontrib><creatorcontrib>Hon, Hsiao-Wuen</creatorcontrib><title>Identification of ambiguous queries in web search</title><title>Information processing &amp; management</title><description>It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clarify the definition of ambiguous queries by constructing the taxonomy of queries from being ambiguous to specific. Second, we ask human annotators to manually classify queries. From manually labeled results, we observe that query ambiguity is to some extent predictable. Third, we propose a supervised learning approach to automatically identify ambiguous queries. Experimental results show that we can correctly identify 87% of labeled queries with the approach. Finally, by using our approach, we estimate that about 16% of queries in a real search log are ambiguous.</description><subject>Ambiguity</subject><subject>Ambiguous query</subject><subject>Broad topics</subject><subject>Classification</subject><subject>Exact sciences and technology</subject><subject>Information and communication sciences</subject><subject>Information processing and retrieval</subject><subject>Information retrieval. Man machine relationship</subject><subject>Information science. Documentation</subject><subject>Learning</subject><subject>Query classification</subject><subject>Query formulation</subject><subject>Query taxonomy</subject><subject>Research process. Evaluation</subject><subject>Sciences and techniques of general use</subject><subject>Search engines</subject><subject>Studies</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kDtPwzAURi0EEqXwA9giJNgSrl9xLCZU8ahUiQVmy7VvwFGaFDsF8e9JacXAwOTl-NxPh5BzCgUFWl43RVivCgZQFaALAHlAJrRSPJdc0UMyAQ5lLqTix-QkpQYAhKRsQujcYzeEOjg7hL7L-jqzq2V43fSblL1vMAZMWeiyT1xmCW10b6fkqLZtwrP9OyUv93fPs8d88fQwn90ucjeah9zrkikmPANhQQsJS6Ral9qz0jmreO1EJShzjJcSRbWUHLz01mmuLfpK8im52nnXsR-HpMGsQnLYtrbDcZyRSglRwRa8-AM2_SZ24zZDtdC00pKOEN1BLvYpRazNOoaVjV-GgtkWNI0ZC5ptQQPawI_4ci-2ydm2jrZzIf1-ZJRVQgk1cjc7DsccHwGjSS5g59CHiG4wvg__XPkGRwGDyg</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Song, Ruihua</creator><creator>Luo, Zhenxiao</creator><creator>Nie, Jian-Yun</creator><creator>Yu, Yong</creator><creator>Hon, Hsiao-Wuen</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20090301</creationdate><title>Identification of ambiguous queries in web search</title><author>Song, Ruihua ; Luo, Zhenxiao ; Nie, Jian-Yun ; Yu, Yong ; Hon, Hsiao-Wuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ambiguity</topic><topic>Ambiguous query</topic><topic>Broad topics</topic><topic>Classification</topic><topic>Exact sciences and technology</topic><topic>Information and communication sciences</topic><topic>Information processing and retrieval</topic><topic>Information retrieval. Man machine relationship</topic><topic>Information science. Documentation</topic><topic>Learning</topic><topic>Query classification</topic><topic>Query formulation</topic><topic>Query taxonomy</topic><topic>Research process. Evaluation</topic><topic>Sciences and techniques of general use</topic><topic>Search engines</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Ruihua</creatorcontrib><creatorcontrib>Luo, Zhenxiao</creatorcontrib><creatorcontrib>Nie, Jian-Yun</creatorcontrib><creatorcontrib>Yu, Yong</creatorcontrib><creatorcontrib>Hon, Hsiao-Wuen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Information processing &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Ruihua</au><au>Luo, Zhenxiao</au><au>Nie, Jian-Yun</au><au>Yu, Yong</au><au>Hon, Hsiao-Wuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of ambiguous queries in web search</atitle><jtitle>Information processing &amp; management</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>45</volume><issue>2</issue><spage>216</spage><epage>229</epage><pages>216-229</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clarify the definition of ambiguous queries by constructing the taxonomy of queries from being ambiguous to specific. Second, we ask human annotators to manually classify queries. From manually labeled results, we observe that query ambiguity is to some extent predictable. Third, we propose a supervised learning approach to automatically identify ambiguous queries. Experimental results show that we can correctly identify 87% of labeled queries with the approach. Finally, by using our approach, we estimate that about 16% of queries in a real search log are ambiguous.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2008.09.005</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4573
ispartof Information processing & management, 2009-03, Vol.45 (2), p.216-229
issn 0306-4573
1873-5371
language eng
recordid cdi_proquest_miscellaneous_57744805
source Library & Information Science Abstracts (LISA); ScienceDirect Journals
subjects Ambiguity
Ambiguous query
Broad topics
Classification
Exact sciences and technology
Information and communication sciences
Information processing and retrieval
Information retrieval. Man machine relationship
Information science. Documentation
Learning
Query classification
Query formulation
Query taxonomy
Research process. Evaluation
Sciences and techniques of general use
Search engines
Studies
title Identification of ambiguous queries in web search
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20ambiguous%20queries%20in%20web%20search&rft.jtitle=Information%20processing%20&%20management&rft.au=Song,%20Ruihua&rft.date=2009-03-01&rft.volume=45&rft.issue=2&rft.spage=216&rft.epage=229&rft.pages=216-229&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/j.ipm.2008.09.005&rft_dat=%3Cproquest_cross%3E1651070111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194918951&rft_id=info:pmid/&rfr_iscdi=true