Loading…
Identification of ambiguous queries in web search
It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clari...
Saved in:
Published in: | Information processing & management 2009-03, Vol.45 (2), p.216-229 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853 |
container_end_page | 229 |
container_issue | 2 |
container_start_page | 216 |
container_title | Information processing & management |
container_volume | 45 |
creator | Song, Ruihua Luo, Zhenxiao Nie, Jian-Yun Yu, Yong Hon, Hsiao-Wuen |
description | It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clarify the definition of ambiguous queries by constructing the taxonomy of queries from being ambiguous to specific. Second, we ask human annotators to manually classify queries. From manually labeled results, we observe that query ambiguity is to some extent predictable. Third, we propose a supervised learning approach to automatically identify ambiguous queries. Experimental results show that we can correctly identify 87% of labeled queries with the approach. Finally, by using our approach, we estimate that about 16% of queries in a real search log are ambiguous. |
doi_str_mv | 10.1016/j.ipm.2008.09.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_57744805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306457308000903</els_id><sourcerecordid>1651070111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwA9giJNgSrl9xLCZU8ahUiQVmy7VvwFGaFDsF8e9JacXAwOTl-NxPh5BzCgUFWl43RVivCgZQFaALAHlAJrRSPJdc0UMyAQ5lLqTix-QkpQYAhKRsQujcYzeEOjg7hL7L-jqzq2V43fSblL1vMAZMWeiyT1xmCW10b6fkqLZtwrP9OyUv93fPs8d88fQwn90ucjeah9zrkikmPANhQQsJS6Ral9qz0jmreO1EJShzjJcSRbWUHLz01mmuLfpK8im52nnXsR-HpMGsQnLYtrbDcZyRSglRwRa8-AM2_SZ24zZDtdC00pKOEN1BLvYpRazNOoaVjV-GgtkWNI0ZC5ptQQPawI_4ci-2ydm2jrZzIf1-ZJRVQgk1cjc7DsccHwGjSS5g59CHiG4wvg__XPkGRwGDyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194918951</pqid></control><display><type>article</type><title>Identification of ambiguous queries in web search</title><source>Library & Information Science Abstracts (LISA)</source><source>ScienceDirect Journals</source><creator>Song, Ruihua ; Luo, Zhenxiao ; Nie, Jian-Yun ; Yu, Yong ; Hon, Hsiao-Wuen</creator><creatorcontrib>Song, Ruihua ; Luo, Zhenxiao ; Nie, Jian-Yun ; Yu, Yong ; Hon, Hsiao-Wuen</creatorcontrib><description>It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clarify the definition of ambiguous queries by constructing the taxonomy of queries from being ambiguous to specific. Second, we ask human annotators to manually classify queries. From manually labeled results, we observe that query ambiguity is to some extent predictable. Third, we propose a supervised learning approach to automatically identify ambiguous queries. Experimental results show that we can correctly identify 87% of labeled queries with the approach. Finally, by using our approach, we estimate that about 16% of queries in a real search log are ambiguous.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2008.09.005</identifier><identifier>CODEN: IPMADK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Ambiguity ; Ambiguous query ; Broad topics ; Classification ; Exact sciences and technology ; Information and communication sciences ; Information processing and retrieval ; Information retrieval. Man machine relationship ; Information science. Documentation ; Learning ; Query classification ; Query formulation ; Query taxonomy ; Research process. Evaluation ; Sciences and techniques of general use ; Search engines ; Studies</subject><ispartof>Information processing & management, 2009-03, Vol.45 (2), p.216-229</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Pergamon Press Inc. Mar 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853</citedby><cites>FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,34114,34115</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21284747$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Ruihua</creatorcontrib><creatorcontrib>Luo, Zhenxiao</creatorcontrib><creatorcontrib>Nie, Jian-Yun</creatorcontrib><creatorcontrib>Yu, Yong</creatorcontrib><creatorcontrib>Hon, Hsiao-Wuen</creatorcontrib><title>Identification of ambiguous queries in web search</title><title>Information processing & management</title><description>It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clarify the definition of ambiguous queries by constructing the taxonomy of queries from being ambiguous to specific. Second, we ask human annotators to manually classify queries. From manually labeled results, we observe that query ambiguity is to some extent predictable. Third, we propose a supervised learning approach to automatically identify ambiguous queries. Experimental results show that we can correctly identify 87% of labeled queries with the approach. Finally, by using our approach, we estimate that about 16% of queries in a real search log are ambiguous.</description><subject>Ambiguity</subject><subject>Ambiguous query</subject><subject>Broad topics</subject><subject>Classification</subject><subject>Exact sciences and technology</subject><subject>Information and communication sciences</subject><subject>Information processing and retrieval</subject><subject>Information retrieval. Man machine relationship</subject><subject>Information science. Documentation</subject><subject>Learning</subject><subject>Query classification</subject><subject>Query formulation</subject><subject>Query taxonomy</subject><subject>Research process. Evaluation</subject><subject>Sciences and techniques of general use</subject><subject>Search engines</subject><subject>Studies</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kDtPwzAURi0EEqXwA9giJNgSrl9xLCZU8ahUiQVmy7VvwFGaFDsF8e9JacXAwOTl-NxPh5BzCgUFWl43RVivCgZQFaALAHlAJrRSPJdc0UMyAQ5lLqTix-QkpQYAhKRsQujcYzeEOjg7hL7L-jqzq2V43fSblL1vMAZMWeiyT1xmCW10b6fkqLZtwrP9OyUv93fPs8d88fQwn90ucjeah9zrkikmPANhQQsJS6Ral9qz0jmreO1EJShzjJcSRbWUHLz01mmuLfpK8im52nnXsR-HpMGsQnLYtrbDcZyRSglRwRa8-AM2_SZ24zZDtdC00pKOEN1BLvYpRazNOoaVjV-GgtkWNI0ZC5ptQQPawI_4ci-2ydm2jrZzIf1-ZJRVQgk1cjc7DsccHwGjSS5g59CHiG4wvg__XPkGRwGDyg</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Song, Ruihua</creator><creator>Luo, Zhenxiao</creator><creator>Nie, Jian-Yun</creator><creator>Yu, Yong</creator><creator>Hon, Hsiao-Wuen</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Science Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20090301</creationdate><title>Identification of ambiguous queries in web search</title><author>Song, Ruihua ; Luo, Zhenxiao ; Nie, Jian-Yun ; Yu, Yong ; Hon, Hsiao-Wuen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Ambiguity</topic><topic>Ambiguous query</topic><topic>Broad topics</topic><topic>Classification</topic><topic>Exact sciences and technology</topic><topic>Information and communication sciences</topic><topic>Information processing and retrieval</topic><topic>Information retrieval. Man machine relationship</topic><topic>Information science. Documentation</topic><topic>Learning</topic><topic>Query classification</topic><topic>Query formulation</topic><topic>Query taxonomy</topic><topic>Research process. Evaluation</topic><topic>Sciences and techniques of general use</topic><topic>Search engines</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Ruihua</creatorcontrib><creatorcontrib>Luo, Zhenxiao</creatorcontrib><creatorcontrib>Nie, Jian-Yun</creatorcontrib><creatorcontrib>Yu, Yong</creatorcontrib><creatorcontrib>Hon, Hsiao-Wuen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Information processing & management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Ruihua</au><au>Luo, Zhenxiao</au><au>Nie, Jian-Yun</au><au>Yu, Yong</au><au>Hon, Hsiao-Wuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of ambiguous queries in web search</atitle><jtitle>Information processing & management</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>45</volume><issue>2</issue><spage>216</spage><epage>229</epage><pages>216-229</pages><issn>0306-4573</issn><eissn>1873-5371</eissn><coden>IPMADK</coden><abstract>It is widely believed that many queries submitted to search engines are inherently ambiguous (e.g., java and apple). However, few studies have tried to classify queries based on ambiguity and to answer “what the proportion of ambiguous queries is”. This paper deals with these issues. First, we clarify the definition of ambiguous queries by constructing the taxonomy of queries from being ambiguous to specific. Second, we ask human annotators to manually classify queries. From manually labeled results, we observe that query ambiguity is to some extent predictable. Third, we propose a supervised learning approach to automatically identify ambiguous queries. Experimental results show that we can correctly identify 87% of labeled queries with the approach. Finally, by using our approach, we estimate that about 16% of queries in a real search log are ambiguous.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2008.09.005</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4573 |
ispartof | Information processing & management, 2009-03, Vol.45 (2), p.216-229 |
issn | 0306-4573 1873-5371 |
language | eng |
recordid | cdi_proquest_miscellaneous_57744805 |
source | Library & Information Science Abstracts (LISA); ScienceDirect Journals |
subjects | Ambiguity Ambiguous query Broad topics Classification Exact sciences and technology Information and communication sciences Information processing and retrieval Information retrieval. Man machine relationship Information science. Documentation Learning Query classification Query formulation Query taxonomy Research process. Evaluation Sciences and techniques of general use Search engines Studies |
title | Identification of ambiguous queries in web search |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20ambiguous%20queries%20in%20web%20search&rft.jtitle=Information%20processing%20&%20management&rft.au=Song,%20Ruihua&rft.date=2009-03-01&rft.volume=45&rft.issue=2&rft.spage=216&rft.epage=229&rft.pages=216-229&rft.issn=0306-4573&rft.eissn=1873-5371&rft.coden=IPMADK&rft_id=info:doi/10.1016/j.ipm.2008.09.005&rft_dat=%3Cproquest_cross%3E1651070111%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-d962724d204a09450be19969d26cca73fc48412c2365e48b530d5dac939aed853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194918951&rft_id=info:pmid/&rfr_iscdi=true |