Loading…

Network inference, error, and informant (in)accuracy: a Bayesian approach

Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneou...

Full description

Saved in:
Bibliographic Details
Published in:Social networks 2003-05, Vol.25 (2), p.103-140
Main Author: Butts, Carter T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203
cites cdi_FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203
container_end_page 140
container_issue 2
container_start_page 103
container_title Social networks
container_volume 25
creator Butts, Carter T.
description Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous inference of informant accuracy and social structure in the presence of measurement error and missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian modeling framework for improved data collection strategies, and the validity of the criterion graph are also discussed.
doi_str_mv 10.1016/S0378-8733(02)00038-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_60473103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873302000382</els_id><sourcerecordid>38464093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD5-gtCNomD1JmmbxI2o-ALRhboOd9IbjM60Y9JR5t_bOqJLVxcu3zkHPsZ2OBxx4NXxI0ilc62k3AdxAABS52KFjbhWJhec81U2-kXW2UZKrz1UKa5H7Paeus82vmWh8RSpcXSYUYxtPMywqYdvG6fYdNl-aA7QuXlEtzjJMDvHBaWATYazWWzRvWyxNY-TRNs_d5M9X10-Xdzkdw_Xtxdnd7kruepypZ03xmDFKymxqIBqDdLUJXcw9t6XXgmvx6AdeS-kL8dUm7oosBIGvAC5yfaWvf3s-5xSZ6chOZpMsKF2nmwFhZIc5L-g1EVVgBnAcgm62KYUydtZDFOMC8vBDobtt2E76LMg7LdhK_rc7s8AJocTH7FxIf2Fi9JwAarnTpcc9Vo-AkWbXBhU1yGS62zdhn-WvgDm347v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38464093</pqid></control><display><type>article</type><title>Network inference, error, and informant (in)accuracy: a Bayesian approach</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Butts, Carter T.</creator><creatorcontrib>Butts, Carter T.</creatorcontrib><description>Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous inference of informant accuracy and social structure in the presence of measurement error and missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian modeling framework for improved data collection strategies, and the validity of the criterion graph are also discussed.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/S0378-8733(02)00038-2</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Bayesian method ; Data collection ; Data collection strategies ; Error of Measurement ; Hierarchical Bayesian models ; History, theory and methodology ; Inference ; Informant accuracy ; Mathematical methods ; Mathematical Models ; Mathematics ; Measurement ; Measurement error ; Methodology ; Methodology (Data Collection) ; Network Analysis ; Network inference ; Networks ; Social Networks ; Sociology</subject><ispartof>Social networks, 2003-05, Vol.25 (2), p.103-140</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203</citedby><cites>FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33224,33775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14591207$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Butts, Carter T.</creatorcontrib><title>Network inference, error, and informant (in)accuracy: a Bayesian approach</title><title>Social networks</title><description>Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous inference of informant accuracy and social structure in the presence of measurement error and missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian modeling framework for improved data collection strategies, and the validity of the criterion graph are also discussed.</description><subject>Accuracy</subject><subject>Bayesian method</subject><subject>Data collection</subject><subject>Data collection strategies</subject><subject>Error of Measurement</subject><subject>Hierarchical Bayesian models</subject><subject>History, theory and methodology</subject><subject>Inference</subject><subject>Informant accuracy</subject><subject>Mathematical methods</subject><subject>Mathematical Models</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Measurement error</subject><subject>Methodology</subject><subject>Methodology (Data Collection)</subject><subject>Network Analysis</subject><subject>Network inference</subject><subject>Networks</subject><subject>Social Networks</subject><subject>Sociology</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNqFkEtLxDAUhYMoOD5-gtCNomD1JmmbxI2o-ALRhboOd9IbjM60Y9JR5t_bOqJLVxcu3zkHPsZ2OBxx4NXxI0ilc62k3AdxAABS52KFjbhWJhec81U2-kXW2UZKrz1UKa5H7Paeus82vmWh8RSpcXSYUYxtPMywqYdvG6fYdNl-aA7QuXlEtzjJMDvHBaWATYazWWzRvWyxNY-TRNs_d5M9X10-Xdzkdw_Xtxdnd7kruepypZ03xmDFKymxqIBqDdLUJXcw9t6XXgmvx6AdeS-kL8dUm7oosBIGvAC5yfaWvf3s-5xSZ6chOZpMsKF2nmwFhZIc5L-g1EVVgBnAcgm62KYUydtZDFOMC8vBDobtt2E76LMg7LdhK_rc7s8AJocTH7FxIf2Fi9JwAarnTpcc9Vo-AkWbXBhU1yGS62zdhn-WvgDm347v</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Butts, Carter T.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>20030501</creationdate><title>Network inference, error, and informant (in)accuracy: a Bayesian approach</title><author>Butts, Carter T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Accuracy</topic><topic>Bayesian method</topic><topic>Data collection</topic><topic>Data collection strategies</topic><topic>Error of Measurement</topic><topic>Hierarchical Bayesian models</topic><topic>History, theory and methodology</topic><topic>Inference</topic><topic>Informant accuracy</topic><topic>Mathematical methods</topic><topic>Mathematical Models</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Measurement error</topic><topic>Methodology</topic><topic>Methodology (Data Collection)</topic><topic>Network Analysis</topic><topic>Network inference</topic><topic>Networks</topic><topic>Social Networks</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butts, Carter T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butts, Carter T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network inference, error, and informant (in)accuracy: a Bayesian approach</atitle><jtitle>Social networks</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>25</volume><issue>2</issue><spage>103</spage><epage>140</epage><pages>103-140</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous inference of informant accuracy and social structure in the presence of measurement error and missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian modeling framework for improved data collection strategies, and the validity of the criterion graph are also discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-8733(02)00038-2</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-8733
ispartof Social networks, 2003-05, Vol.25 (2), p.103-140
issn 0378-8733
1879-2111
language eng
recordid cdi_proquest_miscellaneous_60473103
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Journals; Sociological Abstracts
subjects Accuracy
Bayesian method
Data collection
Data collection strategies
Error of Measurement
Hierarchical Bayesian models
History, theory and methodology
Inference
Informant accuracy
Mathematical methods
Mathematical Models
Mathematics
Measurement
Measurement error
Methodology
Methodology (Data Collection)
Network Analysis
Network inference
Networks
Social Networks
Sociology
title Network inference, error, and informant (in)accuracy: a Bayesian approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20inference,%20error,%20and%20informant%20(in)accuracy:%20a%20Bayesian%20approach&rft.jtitle=Social%20networks&rft.au=Butts,%20Carter%20T.&rft.date=2003-05-01&rft.volume=25&rft.issue=2&rft.spage=103&rft.epage=140&rft.pages=103-140&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/S0378-8733(02)00038-2&rft_dat=%3Cproquest_cross%3E38464093%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=38464093&rft_id=info:pmid/&rfr_iscdi=true