Loading…
Network inference, error, and informant (in)accuracy: a Bayesian approach
Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneou...
Saved in:
Published in: | Social networks 2003-05, Vol.25 (2), p.103-140 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203 |
container_end_page | 140 |
container_issue | 2 |
container_start_page | 103 |
container_title | Social networks |
container_volume | 25 |
creator | Butts, Carter T. |
description | Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous inference of informant accuracy and social structure in the presence of measurement error and missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian modeling framework for improved data collection strategies, and the validity of the criterion graph are also discussed. |
doi_str_mv | 10.1016/S0378-8733(02)00038-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_60473103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873302000382</els_id><sourcerecordid>38464093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOD5-gtCNomD1JmmbxI2o-ALRhboOd9IbjM60Y9JR5t_bOqJLVxcu3zkHPsZ2OBxx4NXxI0ilc62k3AdxAABS52KFjbhWJhec81U2-kXW2UZKrz1UKa5H7Paeus82vmWh8RSpcXSYUYxtPMywqYdvG6fYdNl-aA7QuXlEtzjJMDvHBaWATYazWWzRvWyxNY-TRNs_d5M9X10-Xdzkdw_Xtxdnd7kruepypZ03xmDFKymxqIBqDdLUJXcw9t6XXgmvx6AdeS-kL8dUm7oosBIGvAC5yfaWvf3s-5xSZ6chOZpMsKF2nmwFhZIc5L-g1EVVgBnAcgm62KYUydtZDFOMC8vBDobtt2E76LMg7LdhK_rc7s8AJocTH7FxIf2Fi9JwAarnTpcc9Vo-AkWbXBhU1yGS62zdhn-WvgDm347v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>38464093</pqid></control><display><type>article</type><title>Network inference, error, and informant (in)accuracy: a Bayesian approach</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Butts, Carter T.</creator><creatorcontrib>Butts, Carter T.</creatorcontrib><description>Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous inference of informant accuracy and social structure in the presence of measurement error and missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian modeling framework for improved data collection strategies, and the validity of the criterion graph are also discussed.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/S0378-8733(02)00038-2</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Bayesian method ; Data collection ; Data collection strategies ; Error of Measurement ; Hierarchical Bayesian models ; History, theory and methodology ; Inference ; Informant accuracy ; Mathematical methods ; Mathematical Models ; Mathematics ; Measurement ; Measurement error ; Methodology ; Methodology (Data Collection) ; Network Analysis ; Network inference ; Networks ; Social Networks ; Sociology</subject><ispartof>Social networks, 2003-05, Vol.25 (2), p.103-140</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203</citedby><cites>FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33224,33775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14591207$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Butts, Carter T.</creatorcontrib><title>Network inference, error, and informant (in)accuracy: a Bayesian approach</title><title>Social networks</title><description>Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous inference of informant accuracy and social structure in the presence of measurement error and missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian modeling framework for improved data collection strategies, and the validity of the criterion graph are also discussed.</description><subject>Accuracy</subject><subject>Bayesian method</subject><subject>Data collection</subject><subject>Data collection strategies</subject><subject>Error of Measurement</subject><subject>Hierarchical Bayesian models</subject><subject>History, theory and methodology</subject><subject>Inference</subject><subject>Informant accuracy</subject><subject>Mathematical methods</subject><subject>Mathematical Models</subject><subject>Mathematics</subject><subject>Measurement</subject><subject>Measurement error</subject><subject>Methodology</subject><subject>Methodology (Data Collection)</subject><subject>Network Analysis</subject><subject>Network inference</subject><subject>Networks</subject><subject>Social Networks</subject><subject>Sociology</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNqFkEtLxDAUhYMoOD5-gtCNomD1JmmbxI2o-ALRhboOd9IbjM60Y9JR5t_bOqJLVxcu3zkHPsZ2OBxx4NXxI0ilc62k3AdxAABS52KFjbhWJhec81U2-kXW2UZKrz1UKa5H7Paeus82vmWh8RSpcXSYUYxtPMywqYdvG6fYdNl-aA7QuXlEtzjJMDvHBaWATYazWWzRvWyxNY-TRNs_d5M9X10-Xdzkdw_Xtxdnd7kruepypZ03xmDFKymxqIBqDdLUJXcw9t6XXgmvx6AdeS-kL8dUm7oosBIGvAC5yfaWvf3s-5xSZ6chOZpMsKF2nmwFhZIc5L-g1EVVgBnAcgm62KYUydtZDFOMC8vBDobtt2E76LMg7LdhK_rc7s8AJocTH7FxIf2Fi9JwAarnTpcc9Vo-AkWbXBhU1yGS62zdhn-WvgDm347v</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Butts, Carter T.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>20030501</creationdate><title>Network inference, error, and informant (in)accuracy: a Bayesian approach</title><author>Butts, Carter T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Accuracy</topic><topic>Bayesian method</topic><topic>Data collection</topic><topic>Data collection strategies</topic><topic>Error of Measurement</topic><topic>Hierarchical Bayesian models</topic><topic>History, theory and methodology</topic><topic>Inference</topic><topic>Informant accuracy</topic><topic>Mathematical methods</topic><topic>Mathematical Models</topic><topic>Mathematics</topic><topic>Measurement</topic><topic>Measurement error</topic><topic>Methodology</topic><topic>Methodology (Data Collection)</topic><topic>Network Analysis</topic><topic>Network inference</topic><topic>Networks</topic><topic>Social Networks</topic><topic>Sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butts, Carter T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butts, Carter T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network inference, error, and informant (in)accuracy: a Bayesian approach</atitle><jtitle>Social networks</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>25</volume><issue>2</issue><spage>103</spage><epage>140</epage><pages>103-140</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>Much, if not most, social network data is derived from informant reports; past research, however, has indicated that such reports are in fact highly inaccurate representations of social interaction. In this paper, a family of hierarchical Bayesian models is developed which allows for the simultaneous inference of informant accuracy and social structure in the presence of measurement error and missing data. Posterior simulation for these models using Markov Chain Monte Carlo methods is outlined. Robustness of the models to structurally correlated error rates, implications of the Bayesian modeling framework for improved data collection strategies, and the validity of the criterion graph are also discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-8733(02)00038-2</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-8733 |
ispartof | Social networks, 2003-05, Vol.25 (2), p.103-140 |
issn | 0378-8733 1879-2111 |
language | eng |
recordid | cdi_proquest_miscellaneous_60473103 |
source | International Bibliography of the Social Sciences (IBSS); ScienceDirect Journals; Sociological Abstracts |
subjects | Accuracy Bayesian method Data collection Data collection strategies Error of Measurement Hierarchical Bayesian models History, theory and methodology Inference Informant accuracy Mathematical methods Mathematical Models Mathematics Measurement Measurement error Methodology Methodology (Data Collection) Network Analysis Network inference Networks Social Networks Sociology |
title | Network inference, error, and informant (in)accuracy: a Bayesian approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20inference,%20error,%20and%20informant%20(in)accuracy:%20a%20Bayesian%20approach&rft.jtitle=Social%20networks&rft.au=Butts,%20Carter%20T.&rft.date=2003-05-01&rft.volume=25&rft.issue=2&rft.spage=103&rft.epage=140&rft.pages=103-140&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/S0378-8733(02)00038-2&rft_dat=%3Cproquest_cross%3E38464093%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-78cf999a61633a460ed8039d51c0bfff5f72f8b08ceff23f5bed9d44a6290f203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=38464093&rft_id=info:pmid/&rfr_iscdi=true |