Loading…
Automatic model selection: a new instrument for social science
The properties of automatic model selection are discussed, focusing on PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs o...
Saved in:
Published in: | Electoral studies 2004-09, Vol.23 (3), p.525-544 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03 |
container_end_page | 544 |
container_issue | 3 |
container_start_page | 525 |
container_title | Electoral studies |
container_volume | 23 |
creator | Hendry, David F. Krolzig, Hans-Martin |
description | The properties of automatic model selection are discussed, focusing on
PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs of inference: the latter are unavoidable in any statistical science, whereas the costs of searching seem small in comparison. The choice of a ‘search strategy’ and the actual simulation performance of the approach are discussed. We outline a number of developments that will improve the behavior, and generalize the scope, of such programs, and tackle hitherto intractable problems. |
doi_str_mv | 10.1016/j.electstud.2004.05.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_60724401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0261379404000265</els_id><sourcerecordid>37978519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-Brty1_rSpk3jQhgGv2DAja5Dkr5ChrYZk1Tx3xudwe2s3ubcy32HkGsKBQXa3G4LHNDEEOeuKAFYAXUBUJ6QBW15lTetgFOygLKhecUFOycXIWwBaCkEXZD71RzdqKI12eg6HLLw12bddJepbMKvzE4h-nnEKWa981lwxqqEGYuTwUty1qsh4NXhLsn748Pb-jnfvD69rFeb3FScx7xUmrOmNi1TrCt1KXRfp_G6QyZq1lVac8U4GGCGilYIXetK9Eo0iH3X9lAtyc2-d-fdx4whytEGg8OgJnRzkA3wkjGgR8GkgLc1FQnke9B4F4LHXu68HZX_lhTkr1i5lf9i5a9YCbVMYlNytU9ievjTopcHGZ31iZeds0c7fgDNV4Y_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37978519</pqid></control><display><type>article</type><title>Automatic model selection: a new instrument for social science</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><source>Worldwide Political Science Abstracts</source><creator>Hendry, David F. ; Krolzig, Hans-Martin</creator><creatorcontrib>Hendry, David F. ; Krolzig, Hans-Martin</creatorcontrib><description>The properties of automatic model selection are discussed, focusing on
PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs of inference: the latter are unavoidable in any statistical science, whereas the costs of searching seem small in comparison. The choice of a ‘search strategy’ and the actual simulation performance of the approach are discussed. We outline a number of developments that will improve the behavior, and generalize the scope, of such programs, and tackle hitherto intractable problems.</description><identifier>ISSN: 0261-3794</identifier><identifier>EISSN: 1873-6890</identifier><identifier>DOI: 10.1016/j.electstud.2004.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; DHSY ; Economic modeling ; Economic Models ; Encompassing ; Gets ; Methodology ; Methodology (Data Analysis) ; Model selection ; Model testing ; Research Design ; Simulation ; Statistics</subject><ispartof>Electoral studies, 2004-09, Vol.23 (3), p.525-544</ispartof><rights>2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03</citedby><cites>FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912,33211</link.rule.ids></links><search><creatorcontrib>Hendry, David F.</creatorcontrib><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><title>Automatic model selection: a new instrument for social science</title><title>Electoral studies</title><description>The properties of automatic model selection are discussed, focusing on
PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs of inference: the latter are unavoidable in any statistical science, whereas the costs of searching seem small in comparison. The choice of a ‘search strategy’ and the actual simulation performance of the approach are discussed. We outline a number of developments that will improve the behavior, and generalize the scope, of such programs, and tackle hitherto intractable problems.</description><subject>Algorithms</subject><subject>DHSY</subject><subject>Economic modeling</subject><subject>Economic Models</subject><subject>Encompassing</subject><subject>Gets</subject><subject>Methodology</subject><subject>Methodology (Data Analysis)</subject><subject>Model selection</subject><subject>Model testing</subject><subject>Research Design</subject><subject>Simulation</subject><subject>Statistics</subject><issn>0261-3794</issn><issn>1873-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>7UB</sourceid><recordid>eNqFkE1LxDAURYMoOI7-Brty1_rSpk3jQhgGv2DAja5Dkr5ChrYZk1Tx3xudwe2s3ubcy32HkGsKBQXa3G4LHNDEEOeuKAFYAXUBUJ6QBW15lTetgFOygLKhecUFOycXIWwBaCkEXZD71RzdqKI12eg6HLLw12bddJepbMKvzE4h-nnEKWa981lwxqqEGYuTwUty1qsh4NXhLsn748Pb-jnfvD69rFeb3FScx7xUmrOmNi1TrCt1KXRfp_G6QyZq1lVac8U4GGCGilYIXetK9Eo0iH3X9lAtyc2-d-fdx4whytEGg8OgJnRzkA3wkjGgR8GkgLc1FQnke9B4F4LHXu68HZX_lhTkr1i5lf9i5a9YCbVMYlNytU9ievjTopcHGZ31iZeds0c7fgDNV4Y_</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Hendry, David F.</creator><creator>Krolzig, Hans-Martin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7UB</scope></search><sort><creationdate>20040901</creationdate><title>Automatic model selection: a new instrument for social science</title><author>Hendry, David F. ; Krolzig, Hans-Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>DHSY</topic><topic>Economic modeling</topic><topic>Economic Models</topic><topic>Encompassing</topic><topic>Gets</topic><topic>Methodology</topic><topic>Methodology (Data Analysis)</topic><topic>Model selection</topic><topic>Model testing</topic><topic>Research Design</topic><topic>Simulation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendry, David F.</creatorcontrib><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Electoral studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendry, David F.</au><au>Krolzig, Hans-Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic model selection: a new instrument for social science</atitle><jtitle>Electoral studies</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>23</volume><issue>3</issue><spage>525</spage><epage>544</epage><pages>525-544</pages><issn>0261-3794</issn><eissn>1873-6890</eissn><abstract>The properties of automatic model selection are discussed, focusing on
PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs of inference: the latter are unavoidable in any statistical science, whereas the costs of searching seem small in comparison. The choice of a ‘search strategy’ and the actual simulation performance of the approach are discussed. We outline a number of developments that will improve the behavior, and generalize the scope, of such programs, and tackle hitherto intractable problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electstud.2004.05.002</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-3794 |
ispartof | Electoral studies, 2004-09, Vol.23 (3), p.525-544 |
issn | 0261-3794 1873-6890 |
language | eng |
recordid | cdi_proquest_miscellaneous_60724401 |
source | International Bibliography of the Social Sciences (IBSS); Elsevier; Worldwide Political Science Abstracts |
subjects | Algorithms DHSY Economic modeling Economic Models Encompassing Gets Methodology Methodology (Data Analysis) Model selection Model testing Research Design Simulation Statistics |
title | Automatic model selection: a new instrument for social science |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20model%20selection:%20a%20new%20instrument%20for%20social%20science&rft.jtitle=Electoral%20studies&rft.au=Hendry,%20David%20F.&rft.date=2004-09-01&rft.volume=23&rft.issue=3&rft.spage=525&rft.epage=544&rft.pages=525-544&rft.issn=0261-3794&rft.eissn=1873-6890&rft_id=info:doi/10.1016/j.electstud.2004.05.002&rft_dat=%3Cproquest_cross%3E37978519%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=37978519&rft_id=info:pmid/&rfr_iscdi=true |