Loading…

Automatic model selection: a new instrument for social science

The properties of automatic model selection are discussed, focusing on PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs o...

Full description

Saved in:
Bibliographic Details
Published in:Electoral studies 2004-09, Vol.23 (3), p.525-544
Main Authors: Hendry, David F., Krolzig, Hans-Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03
cites cdi_FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03
container_end_page 544
container_issue 3
container_start_page 525
container_title Electoral studies
container_volume 23
creator Hendry, David F.
Krolzig, Hans-Martin
description The properties of automatic model selection are discussed, focusing on PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs of inference: the latter are unavoidable in any statistical science, whereas the costs of searching seem small in comparison. The choice of a ‘search strategy’ and the actual simulation performance of the approach are discussed. We outline a number of developments that will improve the behavior, and generalize the scope, of such programs, and tackle hitherto intractable problems.
doi_str_mv 10.1016/j.electstud.2004.05.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_60724401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0261379404000265</els_id><sourcerecordid>37978519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-Brty1_rSpk3jQhgGv2DAja5Dkr5ChrYZk1Tx3xudwe2s3ubcy32HkGsKBQXa3G4LHNDEEOeuKAFYAXUBUJ6QBW15lTetgFOygLKhecUFOycXIWwBaCkEXZD71RzdqKI12eg6HLLw12bddJepbMKvzE4h-nnEKWa981lwxqqEGYuTwUty1qsh4NXhLsn748Pb-jnfvD69rFeb3FScx7xUmrOmNi1TrCt1KXRfp_G6QyZq1lVac8U4GGCGilYIXetK9Eo0iH3X9lAtyc2-d-fdx4whytEGg8OgJnRzkA3wkjGgR8GkgLc1FQnke9B4F4LHXu68HZX_lhTkr1i5lf9i5a9YCbVMYlNytU9ievjTopcHGZ31iZeds0c7fgDNV4Y_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>37978519</pqid></control><display><type>article</type><title>Automatic model selection: a new instrument for social science</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><source>Worldwide Political Science Abstracts</source><creator>Hendry, David F. ; Krolzig, Hans-Martin</creator><creatorcontrib>Hendry, David F. ; Krolzig, Hans-Martin</creatorcontrib><description>The properties of automatic model selection are discussed, focusing on PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs of inference: the latter are unavoidable in any statistical science, whereas the costs of searching seem small in comparison. The choice of a ‘search strategy’ and the actual simulation performance of the approach are discussed. We outline a number of developments that will improve the behavior, and generalize the scope, of such programs, and tackle hitherto intractable problems.</description><identifier>ISSN: 0261-3794</identifier><identifier>EISSN: 1873-6890</identifier><identifier>DOI: 10.1016/j.electstud.2004.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; DHSY ; Economic modeling ; Economic Models ; Encompassing ; Gets ; Methodology ; Methodology (Data Analysis) ; Model selection ; Model testing ; Research Design ; Simulation ; Statistics</subject><ispartof>Electoral studies, 2004-09, Vol.23 (3), p.525-544</ispartof><rights>2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03</citedby><cites>FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912,33211</link.rule.ids></links><search><creatorcontrib>Hendry, David F.</creatorcontrib><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><title>Automatic model selection: a new instrument for social science</title><title>Electoral studies</title><description>The properties of automatic model selection are discussed, focusing on PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs of inference: the latter are unavoidable in any statistical science, whereas the costs of searching seem small in comparison. The choice of a ‘search strategy’ and the actual simulation performance of the approach are discussed. We outline a number of developments that will improve the behavior, and generalize the scope, of such programs, and tackle hitherto intractable problems.</description><subject>Algorithms</subject><subject>DHSY</subject><subject>Economic modeling</subject><subject>Economic Models</subject><subject>Encompassing</subject><subject>Gets</subject><subject>Methodology</subject><subject>Methodology (Data Analysis)</subject><subject>Model selection</subject><subject>Model testing</subject><subject>Research Design</subject><subject>Simulation</subject><subject>Statistics</subject><issn>0261-3794</issn><issn>1873-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>7UB</sourceid><recordid>eNqFkE1LxDAURYMoOI7-Brty1_rSpk3jQhgGv2DAja5Dkr5ChrYZk1Tx3xudwe2s3ubcy32HkGsKBQXa3G4LHNDEEOeuKAFYAXUBUJ6QBW15lTetgFOygLKhecUFOycXIWwBaCkEXZD71RzdqKI12eg6HLLw12bddJepbMKvzE4h-nnEKWa981lwxqqEGYuTwUty1qsh4NXhLsn748Pb-jnfvD69rFeb3FScx7xUmrOmNi1TrCt1KXRfp_G6QyZq1lVac8U4GGCGilYIXetK9Eo0iH3X9lAtyc2-d-fdx4whytEGg8OgJnRzkA3wkjGgR8GkgLc1FQnke9B4F4LHXu68HZX_lhTkr1i5lf9i5a9YCbVMYlNytU9ievjTopcHGZ31iZeds0c7fgDNV4Y_</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Hendry, David F.</creator><creator>Krolzig, Hans-Martin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7UB</scope></search><sort><creationdate>20040901</creationdate><title>Automatic model selection: a new instrument for social science</title><author>Hendry, David F. ; Krolzig, Hans-Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>DHSY</topic><topic>Economic modeling</topic><topic>Economic Models</topic><topic>Encompassing</topic><topic>Gets</topic><topic>Methodology</topic><topic>Methodology (Data Analysis)</topic><topic>Model selection</topic><topic>Model testing</topic><topic>Research Design</topic><topic>Simulation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendry, David F.</creatorcontrib><creatorcontrib>Krolzig, Hans-Martin</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Worldwide Political Science Abstracts</collection><jtitle>Electoral studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendry, David F.</au><au>Krolzig, Hans-Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic model selection: a new instrument for social science</atitle><jtitle>Electoral studies</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>23</volume><issue>3</issue><spage>525</spage><epage>544</epage><pages>525-544</pages><issn>0261-3794</issn><eissn>1873-6890</eissn><abstract>The properties of automatic model selection are discussed, focusing on PcGets. We explain the background concepts and why automatic methods can perform well. Criticisms of model selection procedures are noted and rebutted. The algorithm is sketched, distinguishing between costs of search and costs of inference: the latter are unavoidable in any statistical science, whereas the costs of searching seem small in comparison. The choice of a ‘search strategy’ and the actual simulation performance of the approach are discussed. We outline a number of developments that will improve the behavior, and generalize the scope, of such programs, and tackle hitherto intractable problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electstud.2004.05.002</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0261-3794
ispartof Electoral studies, 2004-09, Vol.23 (3), p.525-544
issn 0261-3794
1873-6890
language eng
recordid cdi_proquest_miscellaneous_60724401
source International Bibliography of the Social Sciences (IBSS); Elsevier; Worldwide Political Science Abstracts
subjects Algorithms
DHSY
Economic modeling
Economic Models
Encompassing
Gets
Methodology
Methodology (Data Analysis)
Model selection
Model testing
Research Design
Simulation
Statistics
title Automatic model selection: a new instrument for social science
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20model%20selection:%20a%20new%20instrument%20for%20social%20science&rft.jtitle=Electoral%20studies&rft.au=Hendry,%20David%20F.&rft.date=2004-09-01&rft.volume=23&rft.issue=3&rft.spage=525&rft.epage=544&rft.pages=525-544&rft.issn=0261-3794&rft.eissn=1873-6890&rft_id=info:doi/10.1016/j.electstud.2004.05.002&rft_dat=%3Cproquest_cross%3E37978519%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-2ab7465c84a4d2b29bf5101bde4954d3bb7a470c04c19899b5b39fa96eefd8f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=37978519&rft_id=info:pmid/&rfr_iscdi=true