Loading…
Estimating Nonhierarchical and Nested Log-Linear Models
The recent literature on-log-linear models incorrectly implies that the Iterative Proportional Fitting (IPF) algorithm and associated computer programs such as ECTA can only be used to estimate hierarchical (not nonhierarchical) log-linear models. While ECTA and similar programs are designed for the...
Saved in:
Published in: | Sociological methods & research 1981-08, Vol.10 (1), p.3-49 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c261t-d98177f581fa4c08c7f366bd1d27ddfbf74bbdadbd68112822ddb8090c97bbec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-d98177f581fa4c08c7f366bd1d27ddfbf74bbdadbd68112822ddb8090c97bbec3 |
container_end_page | 49 |
container_issue | 1 |
container_start_page | 3 |
container_title | Sociological methods & research |
container_volume | 10 |
creator | Magidson, Jay Swan, James H. Berk, Richard A. |
description | The recent literature on-log-linear models incorrectly implies that the Iterative Proportional Fitting (IPF) algorithm and associated computer programs such as ECTA can only be used to estimate hierarchical (not nonhierarchical) log-linear models. While ECTA and similar programs are designed for the estimation of hierarchical models, it is shown here that the IPF algorithm (and existing computer programs such as ECTA) can be used to estimate any nonhierarchical model and also many nested log-linear models. The former result follows directly from the symmetry between qualitative/categorical indicator variables and appropriately defined “interaction variables.” The general approach for dichotomous variables is illustrated here using data from the study of “The American Soldier” by Stouffer et al. We also illustrate how the ECTA program can be used to estimate nested models, and show the equivalence between a particular class of nested models and the model of quasi-independence. |
doi_str_mv | 10.1177/004912418101000106 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_61094936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_004912418101000106</sage_id><sourcerecordid>61094936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-d98177f581fa4c08c7f366bd1d27ddfbf74bbdadbd68112822ddb8090c97bbec3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFb_gKuA4C527s10Hksp9QGxbnQd5pU2JU3qTLLw3zulLkRxcTmb7xzOPYRcA70DEGJGKVOADCRQoDQdPyETmM8xl6jYKZkcgPxAnJOLGLcJQUGLCRHLODQ7PTTdOlv13abxQQe7aaxuM925bOXj4F1W9uu8bDqvQ_bSO9_GS3JW6zb6q2-dkveH5dviKS9fH58X92VukcOQOyVTvXouodbMUmlFXXBuHDgUztWmFswYp51xXAKgRHTOSKqoVcIYb4spuT3m7kP_MaYy1a6J1ret7nw_xooDVUwVPIE3v8BtP4YudasAFSJShpgoPFI29DEGX1f7kN4PnxXQ6rBk9XfJZJodTVGv_Y_Y_x1fkk9x8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292220422</pqid></control><display><type>article</type><title>Estimating Nonhierarchical and Nested Log-Linear Models</title><source>Sociological Abstracts</source><source>SAGE Complete Deep Backfile Purchase 2012</source><creator>Magidson, Jay ; Swan, James H. ; Berk, Richard A.</creator><creatorcontrib>Magidson, Jay ; Swan, James H. ; Berk, Richard A.</creatorcontrib><description>The recent literature on-log-linear models incorrectly implies that the Iterative Proportional Fitting (IPF) algorithm and associated computer programs such as ECTA can only be used to estimate hierarchical (not nonhierarchical) log-linear models. While ECTA and similar programs are designed for the estimation of hierarchical models, it is shown here that the IPF algorithm (and existing computer programs such as ECTA) can be used to estimate any nonhierarchical model and also many nested log-linear models. The former result follows directly from the symmetry between qualitative/categorical indicator variables and appropriately defined “interaction variables.” The general approach for dichotomous variables is illustrated here using data from the study of “The American Soldier” by Stouffer et al. We also illustrate how the ECTA program can be used to estimate nested models, and show the equivalence between a particular class of nested models and the model of quasi-independence.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/004912418101000106</identifier><identifier>CODEN: SMREDA</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Hierarchy/Hierarchal/Hierarchies ; Log-linear ; Model/Modeling/Models</subject><ispartof>Sociological methods & research, 1981-08, Vol.10 (1), p.3-49</ispartof><rights>1981 SAGE Publications</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-d98177f581fa4c08c7f366bd1d27ddfbf74bbdadbd68112822ddb8090c97bbec3</citedby><cites>FETCH-LOGICAL-c261t-d98177f581fa4c08c7f366bd1d27ddfbf74bbdadbd68112822ddb8090c97bbec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/004912418101000106$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/004912418101000106$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21845,27924,27925,33775,45082,45470</link.rule.ids></links><search><creatorcontrib>Magidson, Jay</creatorcontrib><creatorcontrib>Swan, James H.</creatorcontrib><creatorcontrib>Berk, Richard A.</creatorcontrib><title>Estimating Nonhierarchical and Nested Log-Linear Models</title><title>Sociological methods & research</title><description>The recent literature on-log-linear models incorrectly implies that the Iterative Proportional Fitting (IPF) algorithm and associated computer programs such as ECTA can only be used to estimate hierarchical (not nonhierarchical) log-linear models. While ECTA and similar programs are designed for the estimation of hierarchical models, it is shown here that the IPF algorithm (and existing computer programs such as ECTA) can be used to estimate any nonhierarchical model and also many nested log-linear models. The former result follows directly from the symmetry between qualitative/categorical indicator variables and appropriately defined “interaction variables.” The general approach for dichotomous variables is illustrated here using data from the study of “The American Soldier” by Stouffer et al. We also illustrate how the ECTA program can be used to estimate nested models, and show the equivalence between a particular class of nested models and the model of quasi-independence.</description><subject>Hierarchy/Hierarchal/Hierarchies</subject><subject>Log-linear</subject><subject>Model/Modeling/Models</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp1kEtLw0AUhQdRsFb_gKuA4C527s10Hksp9QGxbnQd5pU2JU3qTLLw3zulLkRxcTmb7xzOPYRcA70DEGJGKVOADCRQoDQdPyETmM8xl6jYKZkcgPxAnJOLGLcJQUGLCRHLODQ7PTTdOlv13abxQQe7aaxuM925bOXj4F1W9uu8bDqvQ_bSO9_GS3JW6zb6q2-dkveH5dviKS9fH58X92VukcOQOyVTvXouodbMUmlFXXBuHDgUztWmFswYp51xXAKgRHTOSKqoVcIYb4spuT3m7kP_MaYy1a6J1ret7nw_xooDVUwVPIE3v8BtP4YudasAFSJShpgoPFI29DEGX1f7kN4PnxXQ6rBk9XfJZJodTVGv_Y_Y_x1fkk9x8g</recordid><startdate>198108</startdate><enddate>198108</enddate><creator>Magidson, Jay</creator><creator>Swan, James H.</creator><creator>Berk, Richard A.</creator><general>SAGE Publications</general><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQCIK</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>198108</creationdate><title>Estimating Nonhierarchical and Nested Log-Linear Models</title><author>Magidson, Jay ; Swan, James H. ; Berk, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-d98177f581fa4c08c7f366bd1d27ddfbf74bbdadbd68112822ddb8090c97bbec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Hierarchy/Hierarchal/Hierarchies</topic><topic>Log-linear</topic><topic>Model/Modeling/Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magidson, Jay</creatorcontrib><creatorcontrib>Swan, James H.</creatorcontrib><creatorcontrib>Berk, Richard A.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 33</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Sociological methods & research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magidson, Jay</au><au>Swan, James H.</au><au>Berk, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Nonhierarchical and Nested Log-Linear Models</atitle><jtitle>Sociological methods & research</jtitle><date>1981-08</date><risdate>1981</risdate><volume>10</volume><issue>1</issue><spage>3</spage><epage>49</epage><pages>3-49</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><coden>SMREDA</coden><abstract>The recent literature on-log-linear models incorrectly implies that the Iterative Proportional Fitting (IPF) algorithm and associated computer programs such as ECTA can only be used to estimate hierarchical (not nonhierarchical) log-linear models. While ECTA and similar programs are designed for the estimation of hierarchical models, it is shown here that the IPF algorithm (and existing computer programs such as ECTA) can be used to estimate any nonhierarchical model and also many nested log-linear models. The former result follows directly from the symmetry between qualitative/categorical indicator variables and appropriately defined “interaction variables.” The general approach for dichotomous variables is illustrated here using data from the study of “The American Soldier” by Stouffer et al. We also illustrate how the ECTA program can be used to estimate nested models, and show the equivalence between a particular class of nested models and the model of quasi-independence.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/004912418101000106</doi><tpages>47</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-1241 |
ispartof | Sociological methods & research, 1981-08, Vol.10 (1), p.3-49 |
issn | 0049-1241 1552-8294 |
language | eng |
recordid | cdi_proquest_miscellaneous_61094936 |
source | Sociological Abstracts; SAGE Complete Deep Backfile Purchase 2012 |
subjects | Hierarchy/Hierarchal/Hierarchies Log-linear Model/Modeling/Models |
title | Estimating Nonhierarchical and Nested Log-Linear Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Nonhierarchical%20and%20Nested%20Log-Linear%20Models&rft.jtitle=Sociological%20methods%20&%20research&rft.au=Magidson,%20Jay&rft.date=1981-08&rft.volume=10&rft.issue=1&rft.spage=3&rft.epage=49&rft.pages=3-49&rft.issn=0049-1241&rft.eissn=1552-8294&rft.coden=SMREDA&rft_id=info:doi/10.1177/004912418101000106&rft_dat=%3Cproquest_cross%3E61094936%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-d98177f581fa4c08c7f366bd1d27ddfbf74bbdadbd68112822ddb8090c97bbec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1292220422&rft_id=info:pmid/&rft_sage_id=10.1177_004912418101000106&rfr_iscdi=true |