Loading…

A p primer: logit models for social networks

A major criticism of the statistical models for analyzing social networks developed by Holland, Leinhardt, and others [Holland, P.W., Leinhardt, S., 1977. Notes on the statistical analysis of social network data; Holland, P.W., Leinhardt, S., 1981. An exponential family of probability distributions...

Full description

Saved in:
Bibliographic Details
Published in:Social networks 1999, Vol.21 (1), p.37-66
Main Authors: Anderson, Carolyn J, Wasserman, Stanley, Crouch, Bradley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-3b296bc39fcfdae4cb3a5e78b8bc8d8b3b6e543620aed49b816579062facbb643
cites cdi_FETCH-LOGICAL-c478t-3b296bc39fcfdae4cb3a5e78b8bc8d8b3b6e543620aed49b816579062facbb643
container_end_page 66
container_issue 1
container_start_page 37
container_title Social networks
container_volume 21
creator Anderson, Carolyn J
Wasserman, Stanley
Crouch, Bradley
description A major criticism of the statistical models for analyzing social networks developed by Holland, Leinhardt, and others [Holland, P.W., Leinhardt, S., 1977. Notes on the statistical analysis of social network data; Holland, P.W., Leinhardt, S., 1981. An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association. 76, pp. 33–65 (with discussion); Fienberg, S.E., Wasserman, S., 1981. Categorical data analysis of single sociometric relations. In: Leinhardt, S. (Ed.), Sociological Methodology 1981, San Francisco: Jossey-Bass, pp. 156–192; Fienberg, S.E., Meyer, M.M., Wasserman, S., 1985. Statistical analysis of multiple sociometric relations. Journal of the American Statistical Association, 80, pp. 51–67; Wasserman, S., Weaver, S., 1985. Statistical analysis of binary relational data: Parameter estimation. Journal of Mathematical Psychology. 29, pp. 406–427; Wasserman, S., 1987. Conformity of two sociometric relations. Psychometrika. 52, pp. 3–18] is the very strong independence assumption made on interacting individuals or units within a network or group. This limiting assumption is no longer necessary given recent developments on models for random graphs made by Frank and Strauss [Frank, O., Strauss, D., 1986. Markov graphs. Journal of the American Statistical Association. 81, pp. 832–842] and Strauss and Ikeda [Strauss, D., Ikeda, M., 1990. Pseudolikelihood estimation for social networks. Journal of the American Statistical Association. 85, pp. 204–212]. The resulting models are extremely flexible and easy to fit to data. Although Wasserman and Pattison [Wasserman, S., Pattison, P., 1996. Logit models and logistic regressions for social networks: I. An introduction to Markov random graphs and p*. Psychometrika. 60, pp. 401–426] present a derivation and extension of these models, this paper is a primer on how to use these important breakthroughs to model the relationships between actors (individuals, units) within a single network and provides an extension of the models to multiple networks. The models for multiple networks permit researchers to study how groups are similar and/or how they are different. The models for single and multiple networks and the modeling process are illustrated using friendship data from elementary school children from a study by Parker and Asher [Parker, J.G., Asher, S.R., 1993. Friendship and friendship quality in middle childhood: Links with peer group acceptance and feeling
doi_str_mv 10.1016/S0378-8733(98)00012-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_61636209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873398000124</els_id><sourcerecordid>38732245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-3b296bc39fcfdae4cb3a5e78b8bc8d8b3b6e543620aed49b816579062facbb643</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKGgiILVfLRp4kVk8QsWPKjnkKRTydpt1qSr-O9NdxcPXjzN5Xln5n0QOiT4gmDCL58xq0QuKsZOpTjDGBOaF1toREQlc0oI2UajX2QX7cU4SxCviBih85tskS2Cm0O4ylr_5vps7mtoY9b4kEVvnW6zDvovH97jPtppdBvhYDPH6PXu9mXykE-f7h8nN9PcFpXoc2ao5MYy2dim1lBYw3QJlTDCWFELwwyHsmCcYg11IY0gvKwk5rTR1hhesDE6We9dBP-xhNiruYsW2lZ34JdRccKHtPwXZKkxpUWZwKM_4MwvQ5dKqGQpmZAioWNUrikbfIwBGjWY0eFbEawG1WqlWg0elRRqpVoN_x5vtutoddsE3VkXf8MUk5KL4dvrNZb0wqeDoKJ10FmoXQDbq9q7fw79ALs5kKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877189887</pqid></control><display><type>article</type><title>A p primer: logit models for social networks</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier</source><source>Sociological Abstracts</source><creator>Anderson, Carolyn J ; Wasserman, Stanley ; Crouch, Bradley</creator><creatorcontrib>Anderson, Carolyn J ; Wasserman, Stanley ; Crouch, Bradley</creatorcontrib><description>A major criticism of the statistical models for analyzing social networks developed by Holland, Leinhardt, and others [Holland, P.W., Leinhardt, S., 1977. Notes on the statistical analysis of social network data; Holland, P.W., Leinhardt, S., 1981. An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association. 76, pp. 33–65 (with discussion); Fienberg, S.E., Wasserman, S., 1981. Categorical data analysis of single sociometric relations. In: Leinhardt, S. (Ed.), Sociological Methodology 1981, San Francisco: Jossey-Bass, pp. 156–192; Fienberg, S.E., Meyer, M.M., Wasserman, S., 1985. Statistical analysis of multiple sociometric relations. Journal of the American Statistical Association, 80, pp. 51–67; Wasserman, S., Weaver, S., 1985. Statistical analysis of binary relational data: Parameter estimation. Journal of Mathematical Psychology. 29, pp. 406–427; Wasserman, S., 1987. Conformity of two sociometric relations. Psychometrika. 52, pp. 3–18] is the very strong independence assumption made on interacting individuals or units within a network or group. This limiting assumption is no longer necessary given recent developments on models for random graphs made by Frank and Strauss [Frank, O., Strauss, D., 1986. Markov graphs. Journal of the American Statistical Association. 81, pp. 832–842] and Strauss and Ikeda [Strauss, D., Ikeda, M., 1990. Pseudolikelihood estimation for social networks. Journal of the American Statistical Association. 85, pp. 204–212]. The resulting models are extremely flexible and easy to fit to data. Although Wasserman and Pattison [Wasserman, S., Pattison, P., 1996. Logit models and logistic regressions for social networks: I. An introduction to Markov random graphs and p*. Psychometrika. 60, pp. 401–426] present a derivation and extension of these models, this paper is a primer on how to use these important breakthroughs to model the relationships between actors (individuals, units) within a single network and provides an extension of the models to multiple networks. The models for multiple networks permit researchers to study how groups are similar and/or how they are different. The models for single and multiple networks and the modeling process are illustrated using friendship data from elementary school children from a study by Parker and Asher [Parker, J.G., Asher, S.R., 1993. Friendship and friendship quality in middle childhood: Links with peer group acceptance and feelings of loneliness and social dissatisfaction. Developmental Psychology. 29, pp. 611–621].</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/S0378-8733(98)00012-4</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Data analysis ; Interpersonal relationships. Groups. Leadership ; Mathematical methods ; Mathematical Models ; Methodological Problems ; Methodology ; Network Analysis ; Probability ; Social Networks ; Social psychology ; Sociological methodology ; Sociology ; Statistical methods ; Statistical models ; Statistics</subject><ispartof>Social networks, 1999, Vol.21 (1), p.37-66</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-3b296bc39fcfdae4cb3a5e78b8bc8d8b3b6e543620aed49b816579062facbb643</citedby><cites>FETCH-LOGICAL-c478t-3b296bc39fcfdae4cb3a5e78b8bc8d8b3b6e543620aed49b816579062facbb643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906,33205,33756</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2015689$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Carolyn J</creatorcontrib><creatorcontrib>Wasserman, Stanley</creatorcontrib><creatorcontrib>Crouch, Bradley</creatorcontrib><title>A p primer: logit models for social networks</title><title>Social networks</title><description>A major criticism of the statistical models for analyzing social networks developed by Holland, Leinhardt, and others [Holland, P.W., Leinhardt, S., 1977. Notes on the statistical analysis of social network data; Holland, P.W., Leinhardt, S., 1981. An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association. 76, pp. 33–65 (with discussion); Fienberg, S.E., Wasserman, S., 1981. Categorical data analysis of single sociometric relations. In: Leinhardt, S. (Ed.), Sociological Methodology 1981, San Francisco: Jossey-Bass, pp. 156–192; Fienberg, S.E., Meyer, M.M., Wasserman, S., 1985. Statistical analysis of multiple sociometric relations. Journal of the American Statistical Association, 80, pp. 51–67; Wasserman, S., Weaver, S., 1985. Statistical analysis of binary relational data: Parameter estimation. Journal of Mathematical Psychology. 29, pp. 406–427; Wasserman, S., 1987. Conformity of two sociometric relations. Psychometrika. 52, pp. 3–18] is the very strong independence assumption made on interacting individuals or units within a network or group. This limiting assumption is no longer necessary given recent developments on models for random graphs made by Frank and Strauss [Frank, O., Strauss, D., 1986. Markov graphs. Journal of the American Statistical Association. 81, pp. 832–842] and Strauss and Ikeda [Strauss, D., Ikeda, M., 1990. Pseudolikelihood estimation for social networks. Journal of the American Statistical Association. 85, pp. 204–212]. The resulting models are extremely flexible and easy to fit to data. Although Wasserman and Pattison [Wasserman, S., Pattison, P., 1996. Logit models and logistic regressions for social networks: I. An introduction to Markov random graphs and p*. Psychometrika. 60, pp. 401–426] present a derivation and extension of these models, this paper is a primer on how to use these important breakthroughs to model the relationships between actors (individuals, units) within a single network and provides an extension of the models to multiple networks. The models for multiple networks permit researchers to study how groups are similar and/or how they are different. The models for single and multiple networks and the modeling process are illustrated using friendship data from elementary school children from a study by Parker and Asher [Parker, J.G., Asher, S.R., 1993. Friendship and friendship quality in middle childhood: Links with peer group acceptance and feelings of loneliness and social dissatisfaction. Developmental Psychology. 29, pp. 611–621].</description><subject>Data analysis</subject><subject>Interpersonal relationships. Groups. Leadership</subject><subject>Mathematical methods</subject><subject>Mathematical Models</subject><subject>Methodological Problems</subject><subject>Methodology</subject><subject>Network Analysis</subject><subject>Probability</subject><subject>Social Networks</subject><subject>Social psychology</subject><subject>Sociological methodology</subject><subject>Sociology</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistics</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>BHHNA</sourceid><recordid>eNqFkE1LxDAQhoMouK7-BKGgiILVfLRp4kVk8QsWPKjnkKRTydpt1qSr-O9NdxcPXjzN5Xln5n0QOiT4gmDCL58xq0QuKsZOpTjDGBOaF1toREQlc0oI2UajX2QX7cU4SxCviBih85tskS2Cm0O4ylr_5vps7mtoY9b4kEVvnW6zDvovH97jPtppdBvhYDPH6PXu9mXykE-f7h8nN9PcFpXoc2ao5MYy2dim1lBYw3QJlTDCWFELwwyHsmCcYg11IY0gvKwk5rTR1hhesDE6We9dBP-xhNiruYsW2lZ34JdRccKHtPwXZKkxpUWZwKM_4MwvQ5dKqGQpmZAioWNUrikbfIwBGjWY0eFbEawG1WqlWg0elRRqpVoN_x5vtutoddsE3VkXf8MUk5KL4dvrNZb0wqeDoKJ10FmoXQDbq9q7fw79ALs5kKs</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Anderson, Carolyn J</creator><creator>Wasserman, Stanley</creator><creator>Crouch, Bradley</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JHMDA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope></search><sort><creationdate>1999</creationdate><title>A p primer: logit models for social networks</title><author>Anderson, Carolyn J ; Wasserman, Stanley ; Crouch, Bradley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-3b296bc39fcfdae4cb3a5e78b8bc8d8b3b6e543620aed49b816579062facbb643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Data analysis</topic><topic>Interpersonal relationships. Groups. Leadership</topic><topic>Mathematical methods</topic><topic>Mathematical Models</topic><topic>Methodological Problems</topic><topic>Methodology</topic><topic>Network Analysis</topic><topic>Probability</topic><topic>Social Networks</topic><topic>Social psychology</topic><topic>Sociological methodology</topic><topic>Sociology</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Carolyn J</creatorcontrib><creatorcontrib>Wasserman, Stanley</creatorcontrib><creatorcontrib>Crouch, Bradley</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 31</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Carolyn J</au><au>Wasserman, Stanley</au><au>Crouch, Bradley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A p primer: logit models for social networks</atitle><jtitle>Social networks</jtitle><date>1999</date><risdate>1999</risdate><volume>21</volume><issue>1</issue><spage>37</spage><epage>66</epage><pages>37-66</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>A major criticism of the statistical models for analyzing social networks developed by Holland, Leinhardt, and others [Holland, P.W., Leinhardt, S., 1977. Notes on the statistical analysis of social network data; Holland, P.W., Leinhardt, S., 1981. An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association. 76, pp. 33–65 (with discussion); Fienberg, S.E., Wasserman, S., 1981. Categorical data analysis of single sociometric relations. In: Leinhardt, S. (Ed.), Sociological Methodology 1981, San Francisco: Jossey-Bass, pp. 156–192; Fienberg, S.E., Meyer, M.M., Wasserman, S., 1985. Statistical analysis of multiple sociometric relations. Journal of the American Statistical Association, 80, pp. 51–67; Wasserman, S., Weaver, S., 1985. Statistical analysis of binary relational data: Parameter estimation. Journal of Mathematical Psychology. 29, pp. 406–427; Wasserman, S., 1987. Conformity of two sociometric relations. Psychometrika. 52, pp. 3–18] is the very strong independence assumption made on interacting individuals or units within a network or group. This limiting assumption is no longer necessary given recent developments on models for random graphs made by Frank and Strauss [Frank, O., Strauss, D., 1986. Markov graphs. Journal of the American Statistical Association. 81, pp. 832–842] and Strauss and Ikeda [Strauss, D., Ikeda, M., 1990. Pseudolikelihood estimation for social networks. Journal of the American Statistical Association. 85, pp. 204–212]. The resulting models are extremely flexible and easy to fit to data. Although Wasserman and Pattison [Wasserman, S., Pattison, P., 1996. Logit models and logistic regressions for social networks: I. An introduction to Markov random graphs and p*. Psychometrika. 60, pp. 401–426] present a derivation and extension of these models, this paper is a primer on how to use these important breakthroughs to model the relationships between actors (individuals, units) within a single network and provides an extension of the models to multiple networks. The models for multiple networks permit researchers to study how groups are similar and/or how they are different. The models for single and multiple networks and the modeling process are illustrated using friendship data from elementary school children from a study by Parker and Asher [Parker, J.G., Asher, S.R., 1993. Friendship and friendship quality in middle childhood: Links with peer group acceptance and feelings of loneliness and social dissatisfaction. Developmental Psychology. 29, pp. 611–621].</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-8733(98)00012-4</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-8733
ispartof Social networks, 1999, Vol.21 (1), p.37-66
issn 0378-8733
1879-2111
language eng
recordid cdi_proquest_miscellaneous_61636209
source International Bibliography of the Social Sciences (IBSS); Elsevier; Sociological Abstracts
subjects Data analysis
Interpersonal relationships. Groups. Leadership
Mathematical methods
Mathematical Models
Methodological Problems
Methodology
Network Analysis
Probability
Social Networks
Social psychology
Sociological methodology
Sociology
Statistical methods
Statistical models
Statistics
title A p primer: logit models for social networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20p%20primer:%20logit%20models%20for%20social%20networks&rft.jtitle=Social%20networks&rft.au=Anderson,%20Carolyn%20J&rft.date=1999&rft.volume=21&rft.issue=1&rft.spage=37&rft.epage=66&rft.pages=37-66&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/S0378-8733(98)00012-4&rft_dat=%3Cproquest_cross%3E38732245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-3b296bc39fcfdae4cb3a5e78b8bc8d8b3b6e543620aed49b816579062facbb643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1877189887&rft_id=info:pmid/&rfr_iscdi=true