Loading…

Structure and Mechanism of O-Acetylserine Sulfhydrylase

The O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium catalyzes a β-replacement reaction in which the β-acetoxy group of O-acetyl-l-serine (OAS) is replaced by bisulfide to give l-cysteine and acetate. The kinetic mechanism of OASS is ping-pong with a stable α-aminoacrylate intermediat...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-06, Vol.279 (26), p.26803-26806
Main Authors: Rabeh, Wael M., Cook, Paul F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c584t-2e37a08152e16c7753ead28747af1610972658d5a1510b2e472e13336c1284923
cites cdi_FETCH-LOGICAL-c584t-2e37a08152e16c7753ead28747af1610972658d5a1510b2e472e13336c1284923
container_end_page 26806
container_issue 26
container_start_page 26803
container_title The Journal of biological chemistry
container_volume 279
creator Rabeh, Wael M.
Cook, Paul F.
description The O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium catalyzes a β-replacement reaction in which the β-acetoxy group of O-acetyl-l-serine (OAS) is replaced by bisulfide to give l-cysteine and acetate. The kinetic mechanism of OASS is ping-pong with a stable α-aminoacrylate intermediate. The enzyme is a homodimer with one pyridoxal 5′-phosphate (PLP) bound per subunit deep within the protein in a cleft between the N- and C-terminal domains of each of the monomers. All of the active site residues are contributed by a single subunit. The enzyme cycles through open and closed conformations as it catalyzes its reaction with structural changes largely limited to a subdomain of the N-terminal domain. The elimination of acetic acid from OAS is thought to proceed via an anti-E2 mechanism, and the only catalytic group identified to date is lysine 41, which originally participates in Schiff base linkage to PLP. The transition state for the elimination of acetic acid is thought to be asynchronous and earlier for Cβ–O bond cleavage than for Cα–H bond cleavage.
doi_str_mv 10.1074/jbc.R400001200
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66637187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820853320</els_id><sourcerecordid>17675287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-2e37a08152e16c7753ead28747af1610972658d5a1510b2e472e13336c1284923</originalsourceid><addsrcrecordid>eNqF0Mtr3DAQB2BRGprN45pj8aGUXLzRSNbDxxCapJCwkDSQm9DK41iLH1vJTtn_PtruQk5tBsEc9M0w_Ag5AzoHqoqL1dLNHwqaChiln8gMqOY5F_D8mcwoZZCXTOhDchTjaquKEr6QQxBUcSjpjKjHMUxunAJmtq-ye3SN7X3ssqHOFvmlw3HTRgy-x-xxautmU4VNayOekIPapp_TfT8mT9c_fl3d5neLm59Xl3e5E7oYc4ZcWapBMATplBIcbcW0KpStQQItFZNCV8KCALpkWKgEOefSAdNFyfgx-b7buw7D7wnjaDofHbat7XGYopFScgVafQhBSSXYX3j-fygY8LJkTCY631EXhhgD1mYdfGfDxgA12_hNit-8x58Gvu53T8sOq3e-zzuBbzvQ-Jfmjw9oln5wDXaGqdIwmZ6mPDG9Y5iiffUYTHQee4dVGnGjqQb_rxPeADJrm4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1521399226</pqid></control><display><type>article</type><title>Structure and Mechanism of O-Acetylserine Sulfhydrylase</title><source>ScienceDirect</source><creator>Rabeh, Wael M. ; Cook, Paul F.</creator><creatorcontrib>Rabeh, Wael M. ; Cook, Paul F.</creatorcontrib><description>The O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium catalyzes a β-replacement reaction in which the β-acetoxy group of O-acetyl-l-serine (OAS) is replaced by bisulfide to give l-cysteine and acetate. The kinetic mechanism of OASS is ping-pong with a stable α-aminoacrylate intermediate. The enzyme is a homodimer with one pyridoxal 5′-phosphate (PLP) bound per subunit deep within the protein in a cleft between the N- and C-terminal domains of each of the monomers. All of the active site residues are contributed by a single subunit. The enzyme cycles through open and closed conformations as it catalyzes its reaction with structural changes largely limited to a subdomain of the N-terminal domain. The elimination of acetic acid from OAS is thought to proceed via an anti-E2 mechanism, and the only catalytic group identified to date is lysine 41, which originally participates in Schiff base linkage to PLP. The transition state for the elimination of acetic acid is thought to be asynchronous and earlier for Cβ–O bond cleavage than for Cα–H bond cleavage.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.R400001200</identifier><identifier>PMID: 15073190</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; Cysteine - biosynthesis ; Cysteine Synthase - chemistry ; Cysteine Synthase - metabolism ; Kinetics ; Models, Molecular ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Salmonella typhimurium ; Salmonella typhimurium - enzymology</subject><ispartof>The Journal of biological chemistry, 2004-06, Vol.279 (26), p.26803-26806</ispartof><rights>2004 © 2004 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-2e37a08152e16c7753ead28747af1610972658d5a1510b2e472e13336c1284923</citedby><cites>FETCH-LOGICAL-c584t-2e37a08152e16c7753ead28747af1610972658d5a1510b2e472e13336c1284923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820853320$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15073190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rabeh, Wael M.</creatorcontrib><creatorcontrib>Cook, Paul F.</creatorcontrib><title>Structure and Mechanism of O-Acetylserine Sulfhydrylase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium catalyzes a β-replacement reaction in which the β-acetoxy group of O-acetyl-l-serine (OAS) is replaced by bisulfide to give l-cysteine and acetate. The kinetic mechanism of OASS is ping-pong with a stable α-aminoacrylate intermediate. The enzyme is a homodimer with one pyridoxal 5′-phosphate (PLP) bound per subunit deep within the protein in a cleft between the N- and C-terminal domains of each of the monomers. All of the active site residues are contributed by a single subunit. The enzyme cycles through open and closed conformations as it catalyzes its reaction with structural changes largely limited to a subdomain of the N-terminal domain. The elimination of acetic acid from OAS is thought to proceed via an anti-E2 mechanism, and the only catalytic group identified to date is lysine 41, which originally participates in Schiff base linkage to PLP. The transition state for the elimination of acetic acid is thought to be asynchronous and earlier for Cβ–O bond cleavage than for Cα–H bond cleavage.</description><subject>Binding Sites</subject><subject>Cysteine - biosynthesis</subject><subject>Cysteine Synthase - chemistry</subject><subject>Cysteine Synthase - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Salmonella typhimurium</subject><subject>Salmonella typhimurium - enzymology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqF0Mtr3DAQB2BRGprN45pj8aGUXLzRSNbDxxCapJCwkDSQm9DK41iLH1vJTtn_PtruQk5tBsEc9M0w_Ag5AzoHqoqL1dLNHwqaChiln8gMqOY5F_D8mcwoZZCXTOhDchTjaquKEr6QQxBUcSjpjKjHMUxunAJmtq-ye3SN7X3ssqHOFvmlw3HTRgy-x-xxautmU4VNayOekIPapp_TfT8mT9c_fl3d5neLm59Xl3e5E7oYc4ZcWapBMATplBIcbcW0KpStQQItFZNCV8KCALpkWKgEOefSAdNFyfgx-b7buw7D7wnjaDofHbat7XGYopFScgVafQhBSSXYX3j-fygY8LJkTCY631EXhhgD1mYdfGfDxgA12_hNit-8x58Gvu53T8sOq3e-zzuBbzvQ-Jfmjw9oln5wDXaGqdIwmZ6mPDG9Y5iiffUYTHQee4dVGnGjqQb_rxPeADJrm4w</recordid><startdate>20040625</startdate><enddate>20040625</enddate><creator>Rabeh, Wael M.</creator><creator>Cook, Paul F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20040625</creationdate><title>Structure and Mechanism of O-Acetylserine Sulfhydrylase</title><author>Rabeh, Wael M. ; Cook, Paul F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-2e37a08152e16c7753ead28747af1610972658d5a1510b2e472e13336c1284923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Binding Sites</topic><topic>Cysteine - biosynthesis</topic><topic>Cysteine Synthase - chemistry</topic><topic>Cysteine Synthase - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Salmonella typhimurium</topic><topic>Salmonella typhimurium - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabeh, Wael M.</creatorcontrib><creatorcontrib>Cook, Paul F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabeh, Wael M.</au><au>Cook, Paul F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Mechanism of O-Acetylserine Sulfhydrylase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2004-06-25</date><risdate>2004</risdate><volume>279</volume><issue>26</issue><spage>26803</spage><epage>26806</epage><pages>26803-26806</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium catalyzes a β-replacement reaction in which the β-acetoxy group of O-acetyl-l-serine (OAS) is replaced by bisulfide to give l-cysteine and acetate. The kinetic mechanism of OASS is ping-pong with a stable α-aminoacrylate intermediate. The enzyme is a homodimer with one pyridoxal 5′-phosphate (PLP) bound per subunit deep within the protein in a cleft between the N- and C-terminal domains of each of the monomers. All of the active site residues are contributed by a single subunit. The enzyme cycles through open and closed conformations as it catalyzes its reaction with structural changes largely limited to a subdomain of the N-terminal domain. The elimination of acetic acid from OAS is thought to proceed via an anti-E2 mechanism, and the only catalytic group identified to date is lysine 41, which originally participates in Schiff base linkage to PLP. The transition state for the elimination of acetic acid is thought to be asynchronous and earlier for Cβ–O bond cleavage than for Cα–H bond cleavage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15073190</pmid><doi>10.1074/jbc.R400001200</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2004-06, Vol.279 (26), p.26803-26806
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_66637187
source ScienceDirect
subjects Binding Sites
Cysteine - biosynthesis
Cysteine Synthase - chemistry
Cysteine Synthase - metabolism
Kinetics
Models, Molecular
Protein Structure, Secondary
Protein Structure, Tertiary
Salmonella typhimurium
Salmonella typhimurium - enzymology
title Structure and Mechanism of O-Acetylserine Sulfhydrylase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Mechanism%20of%20O-Acetylserine%20Sulfhydrylase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Rabeh,%20Wael%20M.&rft.date=2004-06-25&rft.volume=279&rft.issue=26&rft.spage=26803&rft.epage=26806&rft.pages=26803-26806&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.R400001200&rft_dat=%3Cproquest_cross%3E17675287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c584t-2e37a08152e16c7753ead28747af1610972658d5a1510b2e472e13336c1284923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1521399226&rft_id=info:pmid/15073190&rfr_iscdi=true