Loading…
Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco
Monoterpenoid biosynthesis in tobacco was modified by introducing two subsequent enzymatic activities targeted to different cell compartments. A limonene-3-hydroxylase (lim3h) cDNA was isolated from Mentha spicata L. 'Crispa'. This cDNA was used to re-transform a transgenic Nicotiana tabac...
Saved in:
Published in: | The Plant journal : for cell and molecular biology 2004-07, Vol.39 (1), p.135-145 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Monoterpenoid biosynthesis in tobacco was modified by introducing two subsequent enzymatic activities targeted to different cell compartments. A limonene-3-hydroxylase (lim3h) cDNA was isolated from Mentha spicata L. 'Crispa'. This cDNA was used to re-transform a transgenic Nicotiana tabacum'Petit Havana' SR1 (tobacco) line expressing three Citrus limon L. Burm. f. (lemon) monoterpene synthases producing (+)-limonene, γ-terpinene and( -)-β-pinene as their main products. The targeting sequences of these synthases indicate that they are probably localized in the plastids, whereas the sequence information of the P450 hydroxylase indicates targeting to the endoplasmatic reticulum. Despite the different location of the enzymes, the introduced P450 hydroxylase proved to be functional in the transgenic plants as it hydroxylated (+)-limonene, resulting in the emission of (+)-trans-isopiperitenol. Some further modifications of the (+)-trans-isopiperitenol were also detected, resulting in the additional emission of 1,3,8-p-menthatriene, 1,5,8-p-menthatriene, p-cymene and isopiperitenone. |
---|---|
ISSN: | 0960-7412 1365-313X |
DOI: | 10.1111/j.1365-313X.2004.02113.x |