Loading…

Predictability of FTY720 efficacy in experimental autoimmune encephalomyelitis by in vivo macrophage tracking: Clinical implications for ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging

Purpose To examine the efficacy of FTY720 as a new agent to reduce inflammatory activity in an animal model of multiple sclerosis (MS) by in vivo macrophage tracking. Material and Methods FTY720 was used for treatment of rats in a model of chronic relapsing experimental autoimmune encephalomyelitis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2004-07, Vol.20 (1), p.16-24
Main Authors: Rausch, Martin, Hiestand, Peter, Foster, Carolyn A., Baumann, Diana R., Cannet, Catherine, Rudin, Markus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose To examine the efficacy of FTY720 as a new agent to reduce inflammatory activity in an animal model of multiple sclerosis (MS) by in vivo macrophage tracking. Material and Methods FTY720 was used for treatment of rats in a model of chronic relapsing experimental autoimmune encephalomyelitis (EAE) at an oral dose of 0.3 mg/kg/day. Magnetic resonance imaging (MRI) based on in vivo tracking of macrophages labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, immunohistological staining (IHC), and neurological readouts was used to study the burden of disease in treated and untreated animals. Results While untreated animals showed severe paralysis of the hind paws, intense accumulation of macrophages in brain tissue, and areas of blood‐brain barrier (BBB) disruption, FTY720‐treated animals displayed no signs of inflammatory activity or neurological impairment. These observations were made for both acute phase and first relapse. Conclusion Tracking of macrophages by MRI provides direct evidence of the immunomodulatory efficacy of FTY720 in the EAE model and correlates well with neurological symptoms and histology. J. Magn. Reson. Imaging 2004;20:16–24. © 2004 Wiley‐Liss, Inc.
ISSN:1053-1807
1522-2586
DOI:10.1002/jmri.20057