Loading…
Growth hormone alters components of the glutathione metabolic pathway in Ames dwarf mice
Reduced signaling of the growth hormone (GH)/insulin-like growth factor-1(IGF-1)/insulin pathway is associated with extended life span in several species. Ames dwarf mice are GH and IGF-1 deficient and live 50-64% longer than wild-type littermates (males and females, respectively). Previously, we ha...
Saved in:
Published in: | Annals of the New York Academy of Sciences 2004-06, Vol.1019 (1), p.317-320 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reduced signaling of the growth hormone (GH)/insulin-like growth factor-1(IGF-1)/insulin pathway is associated with extended life span in several species. Ames dwarf mice are GH and IGF-1 deficient and live 50-64% longer than wild-type littermates (males and females, respectively). Previously, we have shown that Ames mice exhibit elevated levels of antioxidative enzymes and lower oxidative damage. To further explore the relationship between GH and antioxidant expression, we administered GH or saline to dwarf mice and evaluated components of the glutathione (GSH) synthesis and degradation system. Growth hormone treatment significantly elevated kidney gamma-glutamyl-cysteine synthetase protein levels in 3- and 12-month-old dwarf mice. In contrast, the activity of the GSH degradation enzyme, gamma-glutamyl transpeptidase, was suppressed by GH administration in brain (P < .05), kidney (P < .01), heart (P < .005), and liver (P < .06). Activity levels of the detoxification enzyme, glutathione-S-transferase, were also suppressed in kidney tissues at 3 and 12 months of age and in 12-month-old dwarf liver tissues (P < .05). Taken together, the current results along with data from previous studies support a role for growth hormone in the regulation of antioxidative defense and, ultimately, life span in organisms with altered GH or IGF-1 signaling. |
---|---|
ISSN: | 0077-8923 1749-6632 |
DOI: | 10.1196/annals.1297.053 |