Loading…

Coordination Properties of Lysine Interacting with Co(I) and Co(II). A Theoretical and Mass Spectrometry Study

This article analyzes the interaction between cobalt cations and lysine both theoretically and experimentally. The influence of d orbital occupation in Co+/2+ cations and the side chain of lysine on the relative stability of the different coordination modes was studied by means of theoretical method...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2008-12, Vol.112 (48), p.12385-12392
Main Authors: Constantino, E, Tortajada, J, Sodupe, M, Rodríguez-Santiago, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article analyzes the interaction between cobalt cations and lysine both theoretically and experimentally. The influence of d orbital occupation in Co+/2+ cations and the side chain of lysine on the relative stability of the different coordination modes was studied by means of theoretical methods. The structure and vibrational frequencies were determined using the B3LYP and BHLYP methods. Single-point calculations were also carried out at the CCSD(T) level. For both systems, Co+−lysine and Co2+−lysine, the most stable structure results from the interaction of neutral lysine to the metal cation through the two amino groups and the carbonyl oxygen, the ground electronic state being a 3A in the case of Co+ and 4A for the Co2+ system. This is in contrast to that found for Co2+ interacting with glycine in which the most stable structure has the amino acid in its zwitterionic form, which points out the importance of the side chain.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp805764y