Loading…

Photoswitches and Luminescent Rigidity Sensors Based on fac-[Re(CO)3(Me4phen)(L)]

The fac-[Re(CO)3(Me4phen)(trans-L)]+ complexes, Me4phen = 3,4,7,8-tetramethyl-1,10-phenanthroline and L = 4-styrylpyridine, stpy, or 1,2-bis(4-pyridyl)ethylene, bpe, were synthesized and characterized by their spectroscopic, photochemical, and photophysical properties. The complexes exhibit trans-to...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2008-12, Vol.47 (23), p.10851-10857
Main Authors: Patrocínio, Antonio Otávio T, Murakami Iha, Neyde Y
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fac-[Re(CO)3(Me4phen)(trans-L)]+ complexes, Me4phen = 3,4,7,8-tetramethyl-1,10-phenanthroline and L = 4-styrylpyridine, stpy, or 1,2-bis(4-pyridyl)ethylene, bpe, were synthesized and characterized by their spectroscopic, photochemical, and photophysical properties. The complexes exhibit trans-to-cis isomerization upon 313, 334, 365, and 404 nm irradiation, and the true quantum yields can be efficiently determined by absorption changes combined with 1H NMR data. For fac-[Re(CO)3(Me4phen)(trans-bpe)]+ similar quantum yields were determined at all wavelengths investigated. However, a lower value (Φtrue = 0.35) was determined for fac-[Re(CO)3(Me4phen)(trans-stpy)]+ at 404 nm irradiation, which indicates different pathways for the photoisomerization process. The photoproducts, fac-[Re(CO)3(Me4phen)(cis-L)]+, exhibit luminescence at room temperature with two maxima ascribed to the 3ILMe4 phen and 3MLCTRe→Me4 phen excited states. The luminescence properties were investigated in different media, and the behavior in glassy EPA at 77 K showed that the contribution of each emissive state is dependent on the excitation wavelength. The photochemical and photophysical behavior of the complexes were rationalized in terms of the energy gap of excited states and can be exploited in photoswitchable luminescent rigidity sensors.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic800504a