Loading…
Slow dynamics in gelation phenomena: from chemical gels to colloidal glasses
We here discuss the results of three-dimensional Monte Carlo simulations of a minimal lattice model for gelling systems. We focus on the dynamics investigated by means of the time autocorrelation function of the density fluctuations and the particle mean-square displacement. We start from the case o...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-05, Vol.69 (5 Pt 1), p.051103-051103, Article 051103 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We here discuss the results of three-dimensional Monte Carlo simulations of a minimal lattice model for gelling systems. We focus on the dynamics investigated by means of the time autocorrelation function of the density fluctuations and the particle mean-square displacement. We start from the case of chemical gelation, i.e., with permanent bonds, and characterize the critical dynamics as determined by the formation of the percolating cluster, as actually observed in polymer gels. By opportunely introducing a finite bond lifetime tau(b), the dynamics displays relevant changes and eventually the onset of a glassy regime. This has been interpreted in terms of a crossover to dynamics more typical of colloidal systems and a connection between classical gelation and recent results on colloidal systems is suggested. By systematically comparing the results in the case of permanent bonds to finite bond lifetime, the crossover and the glassy regime can be understood in terms of effective clusters. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.69.051103 |