Loading…
Hydrodynamic properties of carbon nanotubes
We study water flowing past an array of single walled carbon nanotubes using nonequilibrium molecular dynamics simulations. For carbon nanotubes mounted with a tube spacing of 16.4 x 16.4 nm and diameters of 1.25 and 2.50 nm, respectively, we find drag coefficients in reasonable agreement with the m...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2004-06, Vol.69 (6 Pt 1), p.062201-062201, Article 062201 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study water flowing past an array of single walled carbon nanotubes using nonequilibrium molecular dynamics simulations. For carbon nanotubes mounted with a tube spacing of 16.4 x 16.4 nm and diameters of 1.25 and 2.50 nm, respectively, we find drag coefficients in reasonable agreement with the macroscopic, Stokes-Oseen solution. The slip length is -0.11 nm for the 1.25 nm carbon nanotube, and 0.49 for the 2.50 nm tube for a flow speed of 50 m/s, respectively, and 0.28 nm for the 2.50 nm tube at 200 m/s. A slanted flow configuration with a stream- and spanwise velocity component of 100 ms(-1) recovers the two-dimensional results, but exhibits a significant 88 nm slip along the axis of the tube. These results indicate that slip depends on the particular flow configuration. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.69.062201 |