Loading…
Universality in oscillating flows
We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter omega tau, where omega is the oscillation (angular) frequency and tau is the fluid relaxation time; geometry and lin...
Saved in:
Published in: | Physical review letters 2008-12, Vol.101 (26), p.264501-264501, Article 264501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter omega tau, where omega is the oscillation (angular) frequency and tau is the fluid relaxation time; geometry and linear dimension bear no effect on the flow. Energy dissipation of mechanical resonators in a rarefied gas follows this universality closely in a broad linear dimension (10(-6) m < L < 10(-2) m) and frequency (10(5) Hz < omega/2pi < 10(8) Hz) range. Our results suggest a deep connection between flows of simple and complex fluids. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.101.264501 |