Loading…
Universality in oscillating flows
We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter omega tau, where omega is the oscillation (angular) frequency and tau is the fluid relaxation time; geometry and lin...
Saved in:
Published in: | Physical review letters 2008-12, Vol.101 (26), p.264501-264501, Article 264501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c309t-bd884667ad4bd2a99ad2a7a58d1c37a0dd684a2821d310da2d1dfe09652e7a9b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c309t-bd884667ad4bd2a99ad2a7a58d1c37a0dd684a2821d310da2d1dfe09652e7a9b3 |
container_end_page | 264501 |
container_issue | 26 |
container_start_page | 264501 |
container_title | Physical review letters |
container_volume | 101 |
creator | Ekinci, K L Karabacak, D M Yakhot, V |
description | We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter omega tau, where omega is the oscillation (angular) frequency and tau is the fluid relaxation time; geometry and linear dimension bear no effect on the flow. Energy dissipation of mechanical resonators in a rarefied gas follows this universality closely in a broad linear dimension (10(-6) m < L < 10(-2) m) and frequency (10(5) Hz < omega/2pi < 10(8) Hz) range. Our results suggest a deep connection between flows of simple and complex fluids. |
doi_str_mv | 10.1103/PhysRevLett.101.264501 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66712073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66712073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-bd884667ad4bd2a99ad2a7a58d1c37a0dd684a2821d310da2d1dfe09652e7a9b3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMobk6_wqgvvnXem6RJ8yjDqTBQxD2HtEk10j-zaSf99lZW0Jd74XLOuYcfIUuEFSKw25ePIby6w9Z13QoBV1TwBPCEzBGkiiUiPyVzAIaxApAzchHCJwAgFek5maHiTAou5uR6V_uDa4MpfTdEvo6akPuyNJ2v36OibL7DJTkrTBnc1bQXZLe5f1s_xtvnh6f13TbOGaguzmyaciGksTyz1ChlxilNklrMmTRgrUi5oSlFyxCsoRZt4UCJhDppVMYW5OaYu2-br96FTlc-5G7sUrumD3rMRgqSjUJxFOZtE0LrCr1vfWXaQSPoXzj6H5zxhvoIZzQupw99Vjn7Z5tosB_ux2Lh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66712073</pqid></control><display><type>article</type><title>Universality in oscillating flows</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Ekinci, K L ; Karabacak, D M ; Yakhot, V</creator><creatorcontrib>Ekinci, K L ; Karabacak, D M ; Yakhot, V</creatorcontrib><description>We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter omega tau, where omega is the oscillation (angular) frequency and tau is the fluid relaxation time; geometry and linear dimension bear no effect on the flow. Energy dissipation of mechanical resonators in a rarefied gas follows this universality closely in a broad linear dimension (10(-6) m < L < 10(-2) m) and frequency (10(5) Hz < omega/2pi < 10(8) Hz) range. Our results suggest a deep connection between flows of simple and complex fluids.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.101.264501</identifier><identifier>PMID: 19437646</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2008-12, Vol.101 (26), p.264501-264501, Article 264501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-bd884667ad4bd2a99ad2a7a58d1c37a0dd684a2821d310da2d1dfe09652e7a9b3</citedby><cites>FETCH-LOGICAL-c309t-bd884667ad4bd2a99ad2a7a58d1c37a0dd684a2821d310da2d1dfe09652e7a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19437646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekinci, K L</creatorcontrib><creatorcontrib>Karabacak, D M</creatorcontrib><creatorcontrib>Yakhot, V</creatorcontrib><title>Universality in oscillating flows</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter omega tau, where omega is the oscillation (angular) frequency and tau is the fluid relaxation time; geometry and linear dimension bear no effect on the flow. Energy dissipation of mechanical resonators in a rarefied gas follows this universality closely in a broad linear dimension (10(-6) m < L < 10(-2) m) and frequency (10(5) Hz < omega/2pi < 10(8) Hz) range. Our results suggest a deep connection between flows of simple and complex fluids.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpNkF9LwzAUxYMobk6_wqgvvnXem6RJ8yjDqTBQxD2HtEk10j-zaSf99lZW0Jd74XLOuYcfIUuEFSKw25ePIby6w9Z13QoBV1TwBPCEzBGkiiUiPyVzAIaxApAzchHCJwAgFek5maHiTAou5uR6V_uDa4MpfTdEvo6akPuyNJ2v36OibL7DJTkrTBnc1bQXZLe5f1s_xtvnh6f13TbOGaguzmyaciGksTyz1ChlxilNklrMmTRgrUi5oSlFyxCsoRZt4UCJhDppVMYW5OaYu2-br96FTlc-5G7sUrumD3rMRgqSjUJxFOZtE0LrCr1vfWXaQSPoXzj6H5zxhvoIZzQupw99Vjn7Z5tosB_ux2Lh</recordid><startdate>20081231</startdate><enddate>20081231</enddate><creator>Ekinci, K L</creator><creator>Karabacak, D M</creator><creator>Yakhot, V</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20081231</creationdate><title>Universality in oscillating flows</title><author>Ekinci, K L ; Karabacak, D M ; Yakhot, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-bd884667ad4bd2a99ad2a7a58d1c37a0dd684a2821d310da2d1dfe09652e7a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekinci, K L</creatorcontrib><creatorcontrib>Karabacak, D M</creatorcontrib><creatorcontrib>Yakhot, V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekinci, K L</au><au>Karabacak, D M</au><au>Yakhot, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universality in oscillating flows</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-12-31</date><risdate>2008</risdate><volume>101</volume><issue>26</issue><spage>264501</spage><epage>264501</epage><pages>264501-264501</pages><artnum>264501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter omega tau, where omega is the oscillation (angular) frequency and tau is the fluid relaxation time; geometry and linear dimension bear no effect on the flow. Energy dissipation of mechanical resonators in a rarefied gas follows this universality closely in a broad linear dimension (10(-6) m < L < 10(-2) m) and frequency (10(5) Hz < omega/2pi < 10(8) Hz) range. Our results suggest a deep connection between flows of simple and complex fluids.</abstract><cop>United States</cop><pmid>19437646</pmid><doi>10.1103/PhysRevLett.101.264501</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2008-12, Vol.101 (26), p.264501-264501, Article 264501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_66712073 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Universality in oscillating flows |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universality%20in%20oscillating%20flows&rft.jtitle=Physical%20review%20letters&rft.au=Ekinci,%20K%20L&rft.date=2008-12-31&rft.volume=101&rft.issue=26&rft.spage=264501&rft.epage=264501&rft.pages=264501-264501&rft.artnum=264501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.101.264501&rft_dat=%3Cproquest_cross%3E66712073%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-bd884667ad4bd2a99ad2a7a58d1c37a0dd684a2821d310da2d1dfe09652e7a9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66712073&rft_id=info:pmid/19437646&rfr_iscdi=true |