Loading…

Asymptotic correction of the exchange-correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations

Time-dependent density functional theory (TDDFT) calculations of charge-transfer excitation energies omegaCT are significantly in error when the adiabatic local density approximation (ALDA) is employed for the exchange-correlation kernel fxc. We relate the error to the physical meaning of the orbita...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2004-07, Vol.121 (2), p.655-660
Main Authors: Gritsenko, Oleg, Baerends, Evert Jan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Time-dependent density functional theory (TDDFT) calculations of charge-transfer excitation energies omegaCT are significantly in error when the adiabatic local density approximation (ALDA) is employed for the exchange-correlation kernel fxc. We relate the error to the physical meaning of the orbital energy of the Kohn-Sham lowest unoccupied molecular orbital (LUMO). The LUMO orbital energy in Kohn-Sham DFT--in contrast to the Hartree-Fock model--approximates an excited electron, which is correct for excitations in compact molecules. In CT transitions the energy of the LUMO of the acceptor molecule should instead describe an added electron, i.e., approximate the electron affinity. To obtain a contribution that compensates for the difference, a specific divergence of fxc is required in rigorous TDDFT, and a suitable asymptotically correct form of the kernel fxc(asymp) is proposed. The importance of the asymptotic correction of fxc is demonstrated with the calculation of omegaCT(R) for the prototype diatomic system HeBe at various separations R(He-Be). The TDDFT-ALDA curve omegaCT(R) roughly resembles the benchmark ab initio curve omegaCT CISD(R) of a configuration interaction calculation with single and double excitations in the region R=1-1.5 A, where a sizable He-Be interaction exists, but exhibits the wrong behavior omegaCT(R)
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1759320