Loading…

Identification of an ovulation rate QTL in cattle on BTA14 using selective DNA pooling and interval mapping

Increased twinning incidence in beef cattle has the potential to improve production efficiency. However, phenotypic selection for twinning rate is difficult because of the trait's low heritability and the long time interval necessary to collect phenotypic records. Therefore, this trait and the...

Full description

Saved in:
Bibliographic Details
Published in:Animal genetics 2004-08, Vol.35 (4), p.298-304
Main Authors: Gonda, M.G, Arias, J.A, Shook, G.E, Kirkpatrick, B.W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increased twinning incidence in beef cattle has the potential to improve production efficiency. However, phenotypic selection for twinning rate is difficult because of the trait's low heritability and the long time interval necessary to collect phenotypic records. Therefore, this trait and the correlated trait of ovulation rate are ideal candidates for marker-assisted selection. The objective of this study was to complete a genome-wide search for ovulation rate quantitative trait loci (QTL) in two related sire families. The families (paternal halfsib sires 839802 and 839803) were from a population of cattle selected for ovulation rate at the USDA Meat Animal Research Center, Clay Center, Nebraska. Putative ovulation rate QTL have previously been identified in the 839802 family on chromosomes 7 and 19; however, marker coverage in the original scan was not complete. This study fills the gaps in marker coverage of the earlier study by adding approximately 60 informative microsatellites to each sire family. Each family was genotyped using selective DNA pooling. Sons and daughters were included in either the high or low pool based on their estimated breeding value deviations from the mid-parent average (EBVMD) for ovulation rate. Approximately 40% (839802) and 26% (839803) of available progeny comprised the high and low pools combined. Pooled typing revealed possible associations (nominal P < 0.05) between ovulation rate and marker genotype for 11 and 15 microsatellites in the 839802 and 839803 families, respectively. Subsequent interval mapping strengthened support for the presence of an ovulation rate QTL on BTA14 (chromosome-wise P < 0.02).
ISSN:0268-9146
1365-2052
DOI:10.1111/j.1365-2052.2004.01162.x