Loading…
Reverse Monte Carlo simulations, Raman scattering, and thermal studies of an amorphous Ge30Se70 alloy produced by mechanical alloying
The short- and intermediate-range orders of an amorphous Ge30Se70 alloy produced by mechanical alloying were studied by reverse Monte Carlo simulations of its x-ray total structure factor, Raman scattering, and differential scanning calorimetry. The simulations were used to compute the G(Ge-Ge) (RMC...
Saved in:
Published in: | The Journal of chemical physics 2004-01, Vol.120 (1), p.329-336 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The short- and intermediate-range orders of an amorphous Ge30Se70 alloy produced by mechanical alloying were studied by reverse Monte Carlo simulations of its x-ray total structure factor, Raman scattering, and differential scanning calorimetry. The simulations were used to compute the G(Ge-Ge) (RMC)(r), G(Ge-Se) (RMC)(r), and G(Se-Se) (RMC)(r) partial distribution functions and the S(Ge-Ge) (RMC)(K), S(Ge-Se) (RMC)(K), and S(Se-Se) (RMC)(K) partial structure factors. We calculated the coordination numbers and interatomic distances for the first and second neighbors and the bond-angle distribution functions Theta(ijl)(cos theta). The data obtained indicate that the structure of the alloy has important differences when compared to alloys prepared by other techniques. There are a high number of Se-Se pairs in the first shell, and some of the tetrahedral units formed seemed to be connected by Se-Se bridges. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1629273 |