Loading…
384-channel parallel microfluidic cytometer for rare-cell screening
We have constructed a 384-channel parallel microfluidic cytometer (PMC). The multichannel architecture allows 384 unique samples for a cell-based screen to be read out in approximately 6-10 min, about 30-times the speed of a conventional fluorescence-activated cytometer system (FACS). This architect...
Saved in:
Published in: | Lab on a chip 2009-01, Vol.9 (2), p.305-310 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have constructed a 384-channel parallel microfluidic cytometer (PMC). The multichannel architecture allows 384 unique samples for a cell-based screen to be read out in approximately 6-10 min, about 30-times the speed of a conventional fluorescence-activated cytometer system (FACS). This architecture also allows the signal integration time to be varied over a larger range than is practical in single-channel FACS and is suitable for detection of rare-cells in a high background of negatives. The signal-to-noise advantages have been confirmed by using the system to count rare clonal osteocytes in the most difficult early stages of an expression-cloning screen for the carboxy-terminal parathyroid hormone receptor (CPTHR). This problem requires finding several dozen positive cells in a background of one million negatives. The system is automated around a scanning laser confocal detector and a 96-tip robotic pipettor and can maintain in vitro cultures on-system in 384-well plates. It is therefore directly practical for biology applications using existing high-throughput culture facilities. The PMC system lends itself to high-sample-number cytometry with an unusual capability for time synchronization and rare-cell sensitivity. A limited ability to handle large sample numbers has restricted applications of single-channel FACS in combinatorial cell assays; therefore the PMC could have a significant application in high-throughput screening. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/b811889b |