Loading…

The molecular signature of polycystic ovary syndrome (PCOS) theca cells defined by gene expression profiling

Polycystic ovary syndrome (PCOS) is characterized by increased ovarian androgen secretion, anovulatory infertility due to arrested folliculogenesis, and is frequently found in association with insulin resistance and obesity. Characterization of PCOS theca cells demonstrated that elevated expression...

Full description

Saved in:
Bibliographic Details
Published in:Journal of reproductive immunology 2004-08, Vol.63 (1), p.51-60
Main Authors: Wood, Jennifer R, Ho, Clement K.M, Nelson-Degrave, Velen L, McAllister, Jan M, Strauss, Jerome F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polycystic ovary syndrome (PCOS) is characterized by increased ovarian androgen secretion, anovulatory infertility due to arrested folliculogenesis, and is frequently found in association with insulin resistance and obesity. Characterization of PCOS theca cells demonstrated that elevated expression of the steroidogenic enzymes 17α hydroxylase/17,20 lyase (CYP17) and P450 side chain cleavage enzyme (CYP11A1) play a role in increased androgen production by 3β-hydroxysteroid dehydrogenase in the PCOS theca cell. However, the gene networks and signal transduction pathways which cause the altered expansion of the steroid enzymes remain to be determined. In order to identify these gene networks and/or signaling pathways, we carried out global gene expression profiling of normal and PCOS theca cells using subtractive suppressive hybridization and oligonucleotide microarray analysis. These analyses demonstrated that approximately 2% of genes expressed in the theca cell exhibit altered mRNA abundance in PCOS. Characterization of these genes revealed that retinoic acid synthesis and Wnt signal transduction are altered in the PCOS theca cell. In addition, the transcription factor GATA6, which regulates the promoter activity of CYP17 and CYP11A, was increased in the PCOS compared to normal theca cells. Thus, global gene expression profiling has identified potential pathways which may determine the PCOS theca cell phenotype.
ISSN:0165-0378
1872-7603
DOI:10.1016/j.jri.2004.01.010