Loading…
The Raman detection of peptide tyrosine phosphorylation
Drop-coating-deposition-Raman (DCDR) is used to detect spectral changes induced by phosphorylation of tyrosine amino acid residues in peptides. Four peptides are investigated, with sequences derived from the human protein-tyrosine kinase, p60c-src, with Y-216, Y-419, and Y-530 phosphorylation sites....
Saved in:
Published in: | Analytical biochemistry 2004-09, Vol.332 (1), p.116-121 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Drop-coating-deposition-Raman (DCDR) is used to detect spectral changes induced by phosphorylation of tyrosine amino acid residues in peptides. Four peptides are investigated, with sequences derived from the human protein-tyrosine kinase, p60c-src, with Y-216, Y-419, and Y-530 phosphorylation sites. Although the spectra of the four peptides are quite different, tyrosine phosphorylation is found to invariably induce the collapse of a doublet at 820–850
cm
−1 and the attenuation of a peak around 1205
cm
−1. Moreover, amide III band shifts suggest that tyrosine phosphorylation may promote β sheet formation, particularly in peptides that lack phenylalanine residues. The degree of tyrosine phosphorylation in peptide mixtures is determined using DCDR combined with partial least squares multivariate calibration with a 2% root mean standard error of prediction. |
---|---|
ISSN: | 0003-2697 1096-0309 |
DOI: | 10.1016/j.ab.2004.05.052 |