Loading…

Characterization of Defects and Surface Structures in Microporous Materials by HRTEM, HRSEM, and AFM

High-resolution transmission (HRTEM) and high-resolution scanning electron microscopy as well as atomic force microscopy (AFM), X-ray diffraction, and electron diffraction were used for studying the zeolites MFI, MEL, and the MFI/MEL intergrowth system. All three zeolites consisted of individual par...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy and microanalysis 2004-04, Vol.10 (2), p.224-235
Main Authors: González, Gema, Stracke, Werner, Lopez, Zoraya, Keller, Ulrike, Ricker, Andrea, Reichelt, Rudolf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-resolution transmission (HRTEM) and high-resolution scanning electron microscopy as well as atomic force microscopy (AFM), X-ray diffraction, and electron diffraction were used for studying the zeolites MFI, MEL, and the MFI/MEL intergrowth system. All three zeolites consisted of individual particles having a size in the range of approximately 0.5 μm to 5 μm. The particle habits varied from rather cubelike to almost spherelike with many intermediate habits. Typically, the particles of these three zeolites were assembled by many individual blocks that differed in the dimension from about 25 nm to 140 nm as well as in the shape from very frequently almost rectangular (for MFI, MEL, and MFI/MEL) to sometimes roundish or irregular habits (mainly for MFI/MEL). An estimate shows that some 104 up to more than 106 densely packed blocks typically may assemble each individual zeolite particle or, related to the corresponding unit cell dimension, about 108 up to 1010 unit cells. The fine surface structure of zeolite particles was terracelike with steps between adjacent terraces typically in the range of 20 nm to 60 nm; the minimum step measured was approximately 4 nm. A detailed study of the surface topography was performed by AFM, detecting organic molecules at the block intersections. The presence of topological defects was observed by HRTEM and electron diffraction.
ISSN:1431-9276
1435-8115
DOI:10.1017/S1431927604040097