Loading…
A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations
This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreove...
Saved in:
Published in: | Neural networks 2004-09, Vol.17 (7), p.1003-1015 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-7cc03624994b6d1633d0934c586b2412b872bd0f3d563c565c3563f9b8c1b1a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-7cc03624994b6d1633d0934c586b2412b872bd0f3d563c565c3563f9b8c1b1a33 |
container_end_page | 1015 |
container_issue | 7 |
container_start_page | 1003 |
container_title | Neural networks |
container_volume | 17 |
creator | Xia, Youshen Feng, Gang Wang, Jun |
description | This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications. |
doi_str_mv | 10.1016/j.neunet.2004.05.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66791207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608004000942</els_id><sourcerecordid>66791207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-7cc03624994b6d1633d0934c586b2412b872bd0f3d563c565c3563f9b8c1b1a33</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6D0Ry0Vu3-ep0-iIsy_oBC170HNJJ9ZixJ5lN0jPr2T9uhh7Ym6cKqadeiqcQektJSwmVH3dtgCVAaRkhoiVdS4h8hjZU9UPDesWeow1RA28kUeQKvcp5RyqhBH-JrmjHKVOCbdDfG5zALilBKLgGJjPXUk4x_cYnX35heDzEUJu-NmwMR0hbCBbwFBPOcT76sF3_H_HDYlwyxVt8SHGbzB6b4Gr8bAo4PPsAJuGDBwsnnwFD5YuPIb9GLyYzZ3hzqdfo5-e7H7dfm_vvX77d3tw3VtC-NL21hEsmhkGM0lHJuSMDF7ZTcmSCslH1bHRk4q6T3Hays7w-pmFUlo7UcH6NPqy5db2HBXLRe58tzLMJEJespewHykhfQbGCNsWcE0z6kPzepD-aEn2Wr3d6la_P8jXpdFVbx95d8pdxD-5p6GK7Au8vgMnWzFMywfr8xEnCeDfQyn1aOag2jh6SztafrTtfj1W0i_7_m_wDAGqnQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66791207</pqid></control><display><type>article</type><title>A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations</title><source>Elsevier</source><creator>Xia, Youshen ; Feng, Gang ; Wang, Jun</creator><creatorcontrib>Xia, Youshen ; Feng, Gang ; Wang, Jun</creatorcontrib><description>This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2004.05.006</identifier><identifier>PMID: 15312842</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial Intelligence ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Convex quadratic program ; Exact sciences and technology ; Exponential convergence ; Finite-time convergence ; Humans ; Linear Models ; Models, Neurological ; Neural network ; Neural Networks (Computer) ; Piecewise equation ; Software ; Time Factors</subject><ispartof>Neural networks, 2004-09, Vol.17 (7), p.1003-1015</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-7cc03624994b6d1633d0934c586b2412b872bd0f3d563c565c3563f9b8c1b1a33</citedby><cites>FETCH-LOGICAL-c417t-7cc03624994b6d1633d0934c586b2412b872bd0f3d563c565c3563f9b8c1b1a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16023591$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15312842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Youshen</creatorcontrib><creatorcontrib>Feng, Gang</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Convex quadratic program</subject><subject>Exact sciences and technology</subject><subject>Exponential convergence</subject><subject>Finite-time convergence</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Models, Neurological</subject><subject>Neural network</subject><subject>Neural Networks (Computer)</subject><subject>Piecewise equation</subject><subject>Software</subject><subject>Time Factors</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMo7rj6D0Ry0Vu3-ep0-iIsy_oBC170HNJJ9ZixJ5lN0jPr2T9uhh7Ym6cKqadeiqcQektJSwmVH3dtgCVAaRkhoiVdS4h8hjZU9UPDesWeow1RA28kUeQKvcp5RyqhBH-JrmjHKVOCbdDfG5zALilBKLgGJjPXUk4x_cYnX35heDzEUJu-NmwMR0hbCBbwFBPOcT76sF3_H_HDYlwyxVt8SHGbzB6b4Gr8bAo4PPsAJuGDBwsnnwFD5YuPIb9GLyYzZ3hzqdfo5-e7H7dfm_vvX77d3tw3VtC-NL21hEsmhkGM0lHJuSMDF7ZTcmSCslH1bHRk4q6T3Hays7w-pmFUlo7UcH6NPqy5db2HBXLRe58tzLMJEJespewHykhfQbGCNsWcE0z6kPzepD-aEn2Wr3d6la_P8jXpdFVbx95d8pdxD-5p6GK7Au8vgMnWzFMywfr8xEnCeDfQyn1aOag2jh6SztafrTtfj1W0i_7_m_wDAGqnQA</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Xia, Youshen</creator><creator>Feng, Gang</creator><creator>Wang, Jun</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations</title><author>Xia, Youshen ; Feng, Gang ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-7cc03624994b6d1633d0934c586b2412b872bd0f3d563c565c3563f9b8c1b1a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Convex quadratic program</topic><topic>Exact sciences and technology</topic><topic>Exponential convergence</topic><topic>Finite-time convergence</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Models, Neurological</topic><topic>Neural network</topic><topic>Neural Networks (Computer)</topic><topic>Piecewise equation</topic><topic>Software</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Youshen</creatorcontrib><creatorcontrib>Feng, Gang</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Youshen</au><au>Feng, Gang</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>17</volume><issue>7</issue><spage>1003</spage><epage>1015</epage><pages>1003-1015</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper presents a recurrent neural network for solving strict convex quadratic programming problems and related linear piecewise equations. Compared with the existing neural networks for quadratic program, the proposed neural network has a one-layer structure with a low model complexity. Moreover, the proposed neural network is shown to have a finite-time convergence and exponential convergence. Illustrative examples further show the good performance of the proposed neural network in real-time applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15312842</pmid><doi>10.1016/j.neunet.2004.05.006</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2004-09, Vol.17 (7), p.1003-1015 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_66791207 |
source | Elsevier |
subjects | Applied sciences Artificial Intelligence Computer science control theory systems Computer Simulation Connectionism. Neural networks Convex quadratic program Exact sciences and technology Exponential convergence Finite-time convergence Humans Linear Models Models, Neurological Neural network Neural Networks (Computer) Piecewise equation Software Time Factors |
title | A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20recurrent%20neural%20network%20with%20exponential%20convergence%20for%20solving%20convex%20quadratic%20program%20and%20related%20linear%20piecewise%20equations&rft.jtitle=Neural%20networks&rft.au=Xia,%20Youshen&rft.date=2004-09-01&rft.volume=17&rft.issue=7&rft.spage=1003&rft.epage=1015&rft.pages=1003-1015&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2004.05.006&rft_dat=%3Cproquest_cross%3E66791207%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-7cc03624994b6d1633d0934c586b2412b872bd0f3d563c565c3563f9b8c1b1a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66791207&rft_id=info:pmid/15312842&rfr_iscdi=true |