Loading…

Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya velum: cbbLSQO

Chemoautotrophic endosymbionts residing in Solemya velum gills provide this shallow water clam with most of its nutritional requirements. The cbb gene cluster of the S. velum symbiont, including cbbL and cbbS, which encode the large and small subunits of the carbon-fixing enzyme ribulose 1,5-bisphos...

Full description

Saved in:
Bibliographic Details
Published in:Archives of microbiology 2004-09, Vol.182 (1), p.18-29
Main Authors: SCHWEDOCK, Julie, HARMER, Tara L, SCOTT, Kathleen M, HEKTOR, Harm J, SEITZ, Angelica P, FONTANA, Matthew C, DISTEL, Daniel L, CAVANAUGH, Colleen M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chemoautotrophic endosymbionts residing in Solemya velum gills provide this shallow water clam with most of its nutritional requirements. The cbb gene cluster of the S. velum symbiont, including cbbL and cbbS, which encode the large and small subunits of the carbon-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), was cloned and expressed in Escherichia coli. The recombinant RubisCO had a high specific activity, approximately 3 micromol min(-1) mg protein (-1), and a KCO2 of 40.3 microM. Based on sequence identity and phylogenetic analyses, these genes encode a form IA RubisCO, both subunits of which are closely related to those of the symbiont of the deep-sea hydrothermal vent gastropod Alviniconcha hessleri and the photosynthetic bacterium Allochromatium vinosum. In the cbb gene cluster of the S. velum symbiont, the cbbLS genes were followed by cbbQ and cbbO, which are found in some but not all cbb gene clusters and whose products are implicated in enhancing RubisCO activity post-translationally. cbbQ shares sequence similarity with nirQ and norQ, found in denitrification clusters of Pseudomonas stutzeri and Paracoccus denitrificans. The 3' region of cbbO from the S. velum symbiont, like that of the three other known cbbO genes, shares similarity to the 3' region of norD in the denitrification cluster. This is the first study to explore the cbb gene structure for a chemoautotrophic endosymbiont, which is critical both as an initial step in evaluating cbb operon structure in chemoautotrophic endosymbionts and in understanding the patterns and forces governing RubisCO evolution and physiology.
ISSN:0302-8933
1432-072X
DOI:10.1007/s00203-004-0689-x