Loading…

Evaluation of on-line high-performance size-exclusion chromatography, differential refractometry, and multi-angle laser light scattering analysis for the monitoring of the oligomeric state of human immunodeficiency virus vaccine protein antigen

Chiron has developed a novel mutant form of the human immunodeficiency virus (HIV) envelop protein, o-gp140, that is currently entering Human Phase 1 clinical trials for testing as a prophylactic HIV vaccine. The o-gp140 protein is oligomeric and the quaternary structure is thought to play an import...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chromatography A 2004-07, Vol.1043 (1), p.57-64
Main Authors: Barackman, John, Prado, Isaias, Karunatilake, Chulani, Furuya, Kenji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chiron has developed a novel mutant form of the human immunodeficiency virus (HIV) envelop protein, o-gp140, that is currently entering Human Phase 1 clinical trials for testing as a prophylactic HIV vaccine. The o-gp140 protein is oligomeric and the quaternary structure is thought to play an important role in its activity as an antigen. As o-gp140 proceeds through the clinical trial process and prior to marketing approval, analytical methods that are able to demonstrate manufacturing consistency with respect to degree of oligomerization will need to be developed and validated. On-line high-performance size-exclusion chromatography, differential refractometry, and multi-angle laser light scattering analysis (HPSEC–RI–MALLS), a method commonly used to obtain the molar mass of macromolecules based on the Rayleigh–Gans–Debye approximation, was evaluated for this purpose. The results obtained demonstrated intra- and inter-day precisions to be 0.9 and 3.6% R.S.D., respectively. Accuracy was found to be equal to, or better than, 11% when comparing the known molar masses of test proteins to that of the molar masses determined by the method. Additionally, the method compared favorably to orthogonal native polyacrylamide gel electrophoresis and ultracentrifugation analyses. R-factor analysis was used to demonstrate that HPSEC–RI–MALLS is capable of discriminating compositional differences between o-gp140 test lots. Based on the data presented, HPSEC–RI–MALLS may be a suitable manufacturing control method.
ISSN:0021-9673
DOI:10.1016/j.chroma.2004.02.011