Loading…
Molecular Dynamics Simulation Study of the Interaction of Trehalose with Lipid Membranes
The interactions of the cryoprotective agent trehalose with a lipid membrane made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine at 323 K were studied by means of molecular dynamics simulations. It was observed that trehalose binds to the phospholipid headgroups with its main axis parallel to the me...
Saved in:
Published in: | Langmuir 2004-08, Vol.20 (18), p.7844-7851 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The interactions of the cryoprotective agent trehalose with a lipid membrane made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine at 323 K were studied by means of molecular dynamics simulations. It was observed that trehalose binds to the phospholipid headgroups with its main axis parallel to the membrane normal. Trehalose establishes hydrogen bonds with the carbonyl and phosphate groups and replaces water molecules from the lipid headgroup. Notably, the number of hydrogen bonds (HBs) that the membrane made with its environment was conserved after trehalose binding. The HBs between lipid and trehalose have a longer lifetime than those established between lipid and water. The binding of the sugar does not produce changes either in the lipid area or in the lipid order parameter. The effect of trehalose on the dipole potential is in agreement with experimental results. The contribution of the different components to the membrane dipole potential was analyzed. It was observed that the binding of trehalose produces changes in the different components and the sugar itself contributes to the surface potential due to the polarization of its hydroxyl in the interface. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la049485l |