Loading…
Renal synthesis of urokinase type-plasminogen activator, its receptor, and plasminogen activator inhibitor-1 in diabetic nephropathy in rats: Modulation by angiotensin-converting–enzyme inhibitor
Plasmin is an important factor in the degradation of extracellular matrix. In the study reported here we examined the expression of plasminogen-activator inhibitor-1 (PAI-1), urokinase-type plasminogen activator (uPA), and uPA receptor (uPAR), as well as the relevance of such expression to the produ...
Saved in:
Published in: | The Journal of laboratory and clinical medicine 2004-08, Vol.144 (2), p.69-77 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plasmin is an important factor in the degradation of extracellular matrix. In the study reported here we examined the expression of plasminogen-activator inhibitor-1 (PAI-1), urokinase-type plasminogen activator (uPA), and uPA receptor (uPAR), as well as the relevance of such expression to the production of type IV collagen, a major component of extracellular matrix, in the renal tissue of rats with streptozotocin-induced diabetes. Because angiotensin II is involved in the synthesis of PAI-1 and uPA, we also examined the effect of benazepril, an angiotensin-converting–enzyme inhibitor, on the expression of PAI-1, uPA, and uPAR messenger RNAs (mRNAs) and type IV collagen protein. Rats with streptozocin-induced diabetes—some untreated and some treated with 30 mg/L benazepril—and nondiabetic control rats were sacrificed at 4, 12, or 24 weeks after induction of diabetes. We examined the expression of PAI-1, uPA, and uPAR mRNAs through the use of in situ hybridization and that of type IV collagen by means of immunohistochemical methods. In control rats, we detected weak signals for PAI-1, uPA, and uPAR mRNAs in glomeruli. Diabetic rats exhibited high levels of expression of PAI-1, uPA, and uPAR mRNAs and type IV collagen protein, mainly in mesangial cells. These mRNAs were synthesized in various renal cells (epithelial, mesangial, and endothelial cells and Bowman's capsule). Benazepril inhibited increases in all 3 mRNAs, especially in the mesangium; reduced type IV collagen expression; and attenuated mesangial expansion. Our results indicated that altered expression of PAI-1, uPA, and uPAR in diabetic nephropathy was associated with mesangial expansion and that the beneficial effects of ACE-I may be at least associated with such expression. |
---|---|
ISSN: | 0022-2143 1532-6543 |
DOI: | 10.1016/j.lab.2004.04.002 |