Loading…

Efficient formulation of the stochastic simulation algorithm for chemically reacting systems

In this paper we examine the different formulations of Gillespie's stochastic simulation algorithm (SSA) [D. Gillespie, J. Phys. Chem. 81, 2340 (1977)] with respect to computational efficiency, and propose an optimization to improve the efficiency of the direct method. Based on careful timing s...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2004-09, Vol.121 (9), p.4059-4067
Main Authors: Cao, Yang, Li, Hong, Petzold, Linda
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we examine the different formulations of Gillespie's stochastic simulation algorithm (SSA) [D. Gillespie, J. Phys. Chem. 81, 2340 (1977)] with respect to computational efficiency, and propose an optimization to improve the efficiency of the direct method. Based on careful timing studies and an analysis of the time-consuming operations, we conclude that for most practical problems the optimized direct method is the most efficient formulation of SSA. This is in contrast to the widely held belief that Gibson and Bruck's next reaction method [M. Gibson and J. Bruck, J. Phys. Chem. A 104, 1876 (2000)] is the best way to implement the SSA for large systems. Our analysis explains the source of the discrepancy.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1778376