Loading…

Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry

Metal complexation and tandem mass spectrometry were used to differentiate C- and O-bonded flavonoid monoglucoside isomers. Electrospray ionization of solutions containing a flavonoid glycoside and a metal salt led to the generation of the key [M(II) (L) (L-H)](+) complexes, where M is the metal ion...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2004-09, Vol.15 (9), p.1287-1299
Main Authors: DAVIS, Barry D, BRODBELT, Jennifer S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metal complexation and tandem mass spectrometry were used to differentiate C- and O-bonded flavonoid monoglucoside isomers. Electrospray ionization of solutions containing a flavonoid glycoside and a metal salt led to the generation of the key [M(II) (L) (L-H)](+) complexes, where M is the metal ion and L is the flavonoid glycoside. Thirteen flavonoid monoglucosides were examined in combination with Ca(II), Mg(II), Co(II), Ni(II), and Cu(II). Collisional activated dissociation (CAD) of the [M(II) (L) (L-H)](+) complexes resulted in diagnostic mass spectra, in contrast to the CAD mass spectra of the protonated, deprotonated, and sodium-cationized flavonoid glucosides. Five common sites of glycosylation could be predicted based on the fragmentation patterns of the flavonoid glucoside/magnesium complexes, while flavonoid glucoside/calcium complexes also were effective for location of the glycosylation site when MS(3) was employed. Cobalt, nickel and copper complexation had only limited success in this application. The metal complexation methods were also applied for characterization of a flavonoid rhamnoside, and the dissociation pathways of the metal complexes indicate that flavonoid rhamnosides have distinctive dissociation features from flavonoid glucosides.
ISSN:1044-0305
1879-1123
DOI:10.1016/j.jasms.2004.06.003