Loading…

Loss of small heterodimer partner expression in the liver protects against dyslipidemia

Multiple studies suggest increased conversion of cholesterol to bile acids by cholesterol 7alpha-hydroxylase (CYP7A1) protects against dyslipidemia and atherosclerosis. CYP7A1 expression is repressed by the sequential activity of two nuclear hormone receptors, farnesoid X receptor (FXR) and small he...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research 2009-02, Vol.50 (2), p.193-203
Main Authors: Hartman, Helen B, Lai, Kehdih, Evans, Mark J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiple studies suggest increased conversion of cholesterol to bile acids by cholesterol 7alpha-hydroxylase (CYP7A1) protects against dyslipidemia and atherosclerosis. CYP7A1 expression is repressed by the sequential activity of two nuclear hormone receptors, farnesoid X receptor (FXR) and small heterodimer partner (SHP). Here we demonstrate 129 strain SHP(-/-) mice are protected against hypercholesterolemia resulting from either a cholesterol/cholic acid (chol/CA) diet or from hypothyroidism. In a mixed 129-C57Bl/6 background, LDLR(-/-) and LDLR(-/-)SHP(-/-) mice had nearly identical elevations in hepatic cholesterol content and repression of cholesterol regulated genes when fed a Western diet. However, the LDLR(-/-)SHP(-/-) mice had greatly reduced elevations in serum VLDL and LDL cholesterol levels and triglyceride (TG) levels as compared with LDLR(-/-) mice. Additionally, the hepatic inflammation produced by the Western diet in the LDLR(-/-) mice was abolished in the LDLR(-/-)SHP(-/-) mice. CYP7A1 expression was induced 10-fold by the Western diet in the LDLR(-/-)SHP(-/-) mice but not in the LDLR(-/-) mice. Finally, hepatocyte-specific deletion of SHP expression was also protective against dyslipidemia induced by either a chol/CA diet or by hypothyroidism. While no antagonist ligands have yet been identified for SHP, these results suggest selective inhibition of hepatic SHP expression may provide protection against dyslipidemia.
ISSN:0022-2275
DOI:10.1194/jlr.M800323-JLR200