Loading…
Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data
In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of in...
Saved in:
Published in: | Biometrics 2004-09, Vol.60 (3), p.676-683 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63 |
container_end_page | 683 |
container_issue | 3 |
container_start_page | 676 |
container_title | Biometrics |
container_volume | 60 |
creator | Dunson, D. B. Holloman, C. Calder, C. Gunn, L. H. |
description | In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of individual lesions at each exam time. This interval‐censored data structure makes it difficult to properly adjust for the onset time distribution in assessing covariate effects on rates of lesion progression. This article proposes a joint model for the multiple lesion onset and progression process, motivated by cross‐sectional data from a study of uterine leiomyoma tumors. By using a joint model, one can potentially obtain more precise inferences on rates of onset, while also performing onset time‐adjusted inferences on lesion severity. Following a Bayesian approach, we propose a data augmentation Markov chain Monte Carlo algorithm for posterior computation. |
doi_str_mv | 10.1111/j.0006-341X.2004.00217.x |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66837395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695389</jstor_id><sourcerecordid>3695389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63</originalsourceid><addsrcrecordid>eNqNks9u0zAcxy0EYt3gDRBYHLil-G_iHDhshZWKdj2MadwsJ7ZHQhoXO9naG4-wZ9yT4C5VkTjNF_un7-f7lf2VAYAYjXFcH-sxQihNKMM_xgQhFkeCs_HmGRhhznCCGEHPwegAHYHjEOo45hyRl-AIc0pzkqMRuDxTWxMq1cKF06ap2hvoLFz0TVetGwPnUXMtXLbBdFC1Gk69u-t-QuvdCs7azvhb1Tz8uZ-YNjhvNPysOvUKvLCqCeb1fj8BV-dfvk--JvPldDY5nScly3iWaGE1RRwVZVHkShNSCqQKo0hJELNGC1NYy5TOcq20SokqSlxgkWJuCSZlSk_AhyF37d3v3oROrqpQmqZRrXF9kGkqaEZzHsH3_4G1630b7yaFEJhxwUSExACV3oXgjZVrX62U30qM5K51WctdoXJXqNy1Lh9bl5tofbvP74uV0f-M-5oj8GkA7qrGbJ8cLM9my0U8Rf-bwV-HzvmDn6bxcSKPcjLIVejM5iAr_0umGc24vL6YyovzRf4txbm8jvy7gbfKSXXjqyCvLgnCHCHMRPxA9C-ADLOt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888145848</pqid></control><display><type>article</type><title>Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Dunson, D. B. ; Holloman, C. ; Calder, C. ; Gunn, L. H.</creator><creatorcontrib>Dunson, D. B. ; Holloman, C. ; Calder, C. ; Gunn, L. H.</creatorcontrib><description>In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of individual lesions at each exam time. This interval‐censored data structure makes it difficult to properly adjust for the onset time distribution in assessing covariate effects on rates of lesion progression. This article proposes a joint model for the multiple lesion onset and progression process, motivated by cross‐sectional data from a study of uterine leiomyoma tumors. By using a joint model, one can potentially obtain more precise inferences on rates of onset, while also performing onset time‐adjusted inferences on lesion severity. Following a Bayesian approach, we propose a data augmentation Markov chain Monte Carlo algorithm for posterior computation.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.2004.00217.x</identifier><identifier>PMID: 15339290</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K: Blackwell Publishing</publisher><subject>Adult ; Algorithms ; Bayes Theorem ; Bayesian analysis ; Biometrics ; Biometry ; Cross-Sectional Studies ; Data models ; Disease models ; Female ; Humans ; Interval counts ; Interval-censored ; Leiomyoma ; Leiomyomatosis - etiology ; Leiomyomatosis - pathology ; Lesions ; Markov analysis ; Markov chain ; Markov Chains ; Middle Aged ; Models, Statistical ; Monte Carlo Method ; Monte Carlo simulation ; Multiple event times ; Musical intervals ; neoplasms ; Neoplasms - etiology ; Neoplasms - pathology ; Panel counts ; Parametric models ; Patient assessment ; Poisson process ; Recurrent events ; screening ; Screening data ; Stochastic Processes ; Surrogacy ; Time Factors ; Tumor multiplicity ; Tumors ; Uterine Neoplasms - etiology ; Uterine Neoplasms - pathology</subject><ispartof>Biometrics, 2004-09, Vol.60 (3), p.676-683</ispartof><rights>Copyright 2004 The International Biometric Society</rights><rights>Copyright Blackwell Publishing Ltd. Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63</citedby><cites>FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695389$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695389$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15339290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunson, D. B.</creatorcontrib><creatorcontrib>Holloman, C.</creatorcontrib><creatorcontrib>Calder, C.</creatorcontrib><creatorcontrib>Gunn, L. H.</creatorcontrib><title>Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of individual lesions at each exam time. This interval‐censored data structure makes it difficult to properly adjust for the onset time distribution in assessing covariate effects on rates of lesion progression. This article proposes a joint model for the multiple lesion onset and progression process, motivated by cross‐sectional data from a study of uterine leiomyoma tumors. By using a joint model, one can potentially obtain more precise inferences on rates of onset, while also performing onset time‐adjusted inferences on lesion severity. Following a Bayesian approach, we propose a data augmentation Markov chain Monte Carlo algorithm for posterior computation.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Cross-Sectional Studies</subject><subject>Data models</subject><subject>Disease models</subject><subject>Female</subject><subject>Humans</subject><subject>Interval counts</subject><subject>Interval-censored</subject><subject>Leiomyoma</subject><subject>Leiomyomatosis - etiology</subject><subject>Leiomyomatosis - pathology</subject><subject>Lesions</subject><subject>Markov analysis</subject><subject>Markov chain</subject><subject>Markov Chains</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Multiple event times</subject><subject>Musical intervals</subject><subject>neoplasms</subject><subject>Neoplasms - etiology</subject><subject>Neoplasms - pathology</subject><subject>Panel counts</subject><subject>Parametric models</subject><subject>Patient assessment</subject><subject>Poisson process</subject><subject>Recurrent events</subject><subject>screening</subject><subject>Screening data</subject><subject>Stochastic Processes</subject><subject>Surrogacy</subject><subject>Time Factors</subject><subject>Tumor multiplicity</subject><subject>Tumors</subject><subject>Uterine Neoplasms - etiology</subject><subject>Uterine Neoplasms - pathology</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNks9u0zAcxy0EYt3gDRBYHLil-G_iHDhshZWKdj2MadwsJ7ZHQhoXO9naG4-wZ9yT4C5VkTjNF_un7-f7lf2VAYAYjXFcH-sxQihNKMM_xgQhFkeCs_HmGRhhznCCGEHPwegAHYHjEOo45hyRl-AIc0pzkqMRuDxTWxMq1cKF06ap2hvoLFz0TVetGwPnUXMtXLbBdFC1Gk69u-t-QuvdCs7azvhb1Tz8uZ-YNjhvNPysOvUKvLCqCeb1fj8BV-dfvk--JvPldDY5nScly3iWaGE1RRwVZVHkShNSCqQKo0hJELNGC1NYy5TOcq20SokqSlxgkWJuCSZlSk_AhyF37d3v3oROrqpQmqZRrXF9kGkqaEZzHsH3_4G1630b7yaFEJhxwUSExACV3oXgjZVrX62U30qM5K51WctdoXJXqNy1Lh9bl5tofbvP74uV0f-M-5oj8GkA7qrGbJ8cLM9my0U8Rf-bwV-HzvmDn6bxcSKPcjLIVejM5iAr_0umGc24vL6YyovzRf4txbm8jvy7gbfKSXXjqyCvLgnCHCHMRPxA9C-ADLOt</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Dunson, D. B.</creator><creator>Holloman, C.</creator><creator>Calder, C.</creator><creator>Gunn, L. H.</creator><general>Blackwell Publishing</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data</title><author>Dunson, D. B. ; Holloman, C. ; Calder, C. ; Gunn, L. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Cross-Sectional Studies</topic><topic>Data models</topic><topic>Disease models</topic><topic>Female</topic><topic>Humans</topic><topic>Interval counts</topic><topic>Interval-censored</topic><topic>Leiomyoma</topic><topic>Leiomyomatosis - etiology</topic><topic>Leiomyomatosis - pathology</topic><topic>Lesions</topic><topic>Markov analysis</topic><topic>Markov chain</topic><topic>Markov Chains</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Multiple event times</topic><topic>Musical intervals</topic><topic>neoplasms</topic><topic>Neoplasms - etiology</topic><topic>Neoplasms - pathology</topic><topic>Panel counts</topic><topic>Parametric models</topic><topic>Patient assessment</topic><topic>Poisson process</topic><topic>Recurrent events</topic><topic>screening</topic><topic>Screening data</topic><topic>Stochastic Processes</topic><topic>Surrogacy</topic><topic>Time Factors</topic><topic>Tumor multiplicity</topic><topic>Tumors</topic><topic>Uterine Neoplasms - etiology</topic><topic>Uterine Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunson, D. B.</creatorcontrib><creatorcontrib>Holloman, C.</creatorcontrib><creatorcontrib>Calder, C.</creatorcontrib><creatorcontrib>Gunn, L. H.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunson, D. B.</au><au>Holloman, C.</au><au>Calder, C.</au><au>Gunn, L. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2004-09</date><risdate>2004</risdate><volume>60</volume><issue>3</issue><spage>676</spage><epage>683</epage><pages>676-683</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of individual lesions at each exam time. This interval‐censored data structure makes it difficult to properly adjust for the onset time distribution in assessing covariate effects on rates of lesion progression. This article proposes a joint model for the multiple lesion onset and progression process, motivated by cross‐sectional data from a study of uterine leiomyoma tumors. By using a joint model, one can potentially obtain more precise inferences on rates of onset, while also performing onset time‐adjusted inferences on lesion severity. Following a Bayesian approach, we propose a data augmentation Markov chain Monte Carlo algorithm for posterior computation.</abstract><cop>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K</cop><pub>Blackwell Publishing</pub><pmid>15339290</pmid><doi>10.1111/j.0006-341X.2004.00217.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2004-09, Vol.60 (3), p.676-683 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_66837395 |
source | EBSCOhost SPORTDiscus with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Adult Algorithms Bayes Theorem Bayesian analysis Biometrics Biometry Cross-Sectional Studies Data models Disease models Female Humans Interval counts Interval-censored Leiomyoma Leiomyomatosis - etiology Leiomyomatosis - pathology Lesions Markov analysis Markov chain Markov Chains Middle Aged Models, Statistical Monte Carlo Method Monte Carlo simulation Multiple event times Musical intervals neoplasms Neoplasms - etiology Neoplasms - pathology Panel counts Parametric models Patient assessment Poisson process Recurrent events screening Screening data Stochastic Processes Surrogacy Time Factors Tumor multiplicity Tumors Uterine Neoplasms - etiology Uterine Neoplasms - pathology |
title | Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Modeling%20of%20Multiple%20Lesion%20Onset%20and%20Growth%20from%20Interval%E2%80%90Censored%20Data&rft.jtitle=Biometrics&rft.au=Dunson,%20D.%20B.&rft.date=2004-09&rft.volume=60&rft.issue=3&rft.spage=676&rft.epage=683&rft.pages=676-683&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.2004.00217.x&rft_dat=%3Cjstor_proqu%3E3695389%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=888145848&rft_id=info:pmid/15339290&rft_jstor_id=3695389&rfr_iscdi=true |