Loading…

Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data

In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of in...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics 2004-09, Vol.60 (3), p.676-683
Main Authors: Dunson, D. B., Holloman, C., Calder, C., Gunn, L. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63
cites cdi_FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63
container_end_page 683
container_issue 3
container_start_page 676
container_title Biometrics
container_volume 60
creator Dunson, D. B.
Holloman, C.
Calder, C.
Gunn, L. H.
description In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of individual lesions at each exam time. This interval‐censored data structure makes it difficult to properly adjust for the onset time distribution in assessing covariate effects on rates of lesion progression. This article proposes a joint model for the multiple lesion onset and progression process, motivated by cross‐sectional data from a study of uterine leiomyoma tumors. By using a joint model, one can potentially obtain more precise inferences on rates of onset, while also performing onset time‐adjusted inferences on lesion severity. Following a Bayesian approach, we propose a data augmentation Markov chain Monte Carlo algorithm for posterior computation.
doi_str_mv 10.1111/j.0006-341X.2004.00217.x
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_66837395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695389</jstor_id><sourcerecordid>3695389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63</originalsourceid><addsrcrecordid>eNqNks9u0zAcxy0EYt3gDRBYHLil-G_iHDhshZWKdj2MadwsJ7ZHQhoXO9naG4-wZ9yT4C5VkTjNF_un7-f7lf2VAYAYjXFcH-sxQihNKMM_xgQhFkeCs_HmGRhhznCCGEHPwegAHYHjEOo45hyRl-AIc0pzkqMRuDxTWxMq1cKF06ap2hvoLFz0TVetGwPnUXMtXLbBdFC1Gk69u-t-QuvdCs7azvhb1Tz8uZ-YNjhvNPysOvUKvLCqCeb1fj8BV-dfvk--JvPldDY5nScly3iWaGE1RRwVZVHkShNSCqQKo0hJELNGC1NYy5TOcq20SokqSlxgkWJuCSZlSk_AhyF37d3v3oROrqpQmqZRrXF9kGkqaEZzHsH3_4G1630b7yaFEJhxwUSExACV3oXgjZVrX62U30qM5K51WctdoXJXqNy1Lh9bl5tofbvP74uV0f-M-5oj8GkA7qrGbJ8cLM9my0U8Rf-bwV-HzvmDn6bxcSKPcjLIVejM5iAr_0umGc24vL6YyovzRf4txbm8jvy7gbfKSXXjqyCvLgnCHCHMRPxA9C-ADLOt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>888145848</pqid></control><display><type>article</type><title>Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data</title><source>EBSCOhost SPORTDiscus with Full Text</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Dunson, D. B. ; Holloman, C. ; Calder, C. ; Gunn, L. H.</creator><creatorcontrib>Dunson, D. B. ; Holloman, C. ; Calder, C. ; Gunn, L. H.</creatorcontrib><description>In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of individual lesions at each exam time. This interval‐censored data structure makes it difficult to properly adjust for the onset time distribution in assessing covariate effects on rates of lesion progression. This article proposes a joint model for the multiple lesion onset and progression process, motivated by cross‐sectional data from a study of uterine leiomyoma tumors. By using a joint model, one can potentially obtain more precise inferences on rates of onset, while also performing onset time‐adjusted inferences on lesion severity. Following a Bayesian approach, we propose a data augmentation Markov chain Monte Carlo algorithm for posterior computation.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.2004.00217.x</identifier><identifier>PMID: 15339290</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K: Blackwell Publishing</publisher><subject>Adult ; Algorithms ; Bayes Theorem ; Bayesian analysis ; Biometrics ; Biometry ; Cross-Sectional Studies ; Data models ; Disease models ; Female ; Humans ; Interval counts ; Interval-censored ; Leiomyoma ; Leiomyomatosis - etiology ; Leiomyomatosis - pathology ; Lesions ; Markov analysis ; Markov chain ; Markov Chains ; Middle Aged ; Models, Statistical ; Monte Carlo Method ; Monte Carlo simulation ; Multiple event times ; Musical intervals ; neoplasms ; Neoplasms - etiology ; Neoplasms - pathology ; Panel counts ; Parametric models ; Patient assessment ; Poisson process ; Recurrent events ; screening ; Screening data ; Stochastic Processes ; Surrogacy ; Time Factors ; Tumor multiplicity ; Tumors ; Uterine Neoplasms - etiology ; Uterine Neoplasms - pathology</subject><ispartof>Biometrics, 2004-09, Vol.60 (3), p.676-683</ispartof><rights>Copyright 2004 The International Biometric Society</rights><rights>Copyright Blackwell Publishing Ltd. Sep 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63</citedby><cites>FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695389$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695389$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15339290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunson, D. B.</creatorcontrib><creatorcontrib>Holloman, C.</creatorcontrib><creatorcontrib>Calder, C.</creatorcontrib><creatorcontrib>Gunn, L. H.</creatorcontrib><title>Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of individual lesions at each exam time. This interval‐censored data structure makes it difficult to properly adjust for the onset time distribution in assessing covariate effects on rates of lesion progression. This article proposes a joint model for the multiple lesion onset and progression process, motivated by cross‐sectional data from a study of uterine leiomyoma tumors. By using a joint model, one can potentially obtain more precise inferences on rates of onset, while also performing onset time‐adjusted inferences on lesion severity. Following a Bayesian approach, we propose a data augmentation Markov chain Monte Carlo algorithm for posterior computation.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biometrics</subject><subject>Biometry</subject><subject>Cross-Sectional Studies</subject><subject>Data models</subject><subject>Disease models</subject><subject>Female</subject><subject>Humans</subject><subject>Interval counts</subject><subject>Interval-censored</subject><subject>Leiomyoma</subject><subject>Leiomyomatosis - etiology</subject><subject>Leiomyomatosis - pathology</subject><subject>Lesions</subject><subject>Markov analysis</subject><subject>Markov chain</subject><subject>Markov Chains</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Multiple event times</subject><subject>Musical intervals</subject><subject>neoplasms</subject><subject>Neoplasms - etiology</subject><subject>Neoplasms - pathology</subject><subject>Panel counts</subject><subject>Parametric models</subject><subject>Patient assessment</subject><subject>Poisson process</subject><subject>Recurrent events</subject><subject>screening</subject><subject>Screening data</subject><subject>Stochastic Processes</subject><subject>Surrogacy</subject><subject>Time Factors</subject><subject>Tumor multiplicity</subject><subject>Tumors</subject><subject>Uterine Neoplasms - etiology</subject><subject>Uterine Neoplasms - pathology</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNks9u0zAcxy0EYt3gDRBYHLil-G_iHDhshZWKdj2MadwsJ7ZHQhoXO9naG4-wZ9yT4C5VkTjNF_un7-f7lf2VAYAYjXFcH-sxQihNKMM_xgQhFkeCs_HmGRhhznCCGEHPwegAHYHjEOo45hyRl-AIc0pzkqMRuDxTWxMq1cKF06ap2hvoLFz0TVetGwPnUXMtXLbBdFC1Gk69u-t-QuvdCs7azvhb1Tz8uZ-YNjhvNPysOvUKvLCqCeb1fj8BV-dfvk--JvPldDY5nScly3iWaGE1RRwVZVHkShNSCqQKo0hJELNGC1NYy5TOcq20SokqSlxgkWJuCSZlSk_AhyF37d3v3oROrqpQmqZRrXF9kGkqaEZzHsH3_4G1630b7yaFEJhxwUSExACV3oXgjZVrX62U30qM5K51WctdoXJXqNy1Lh9bl5tofbvP74uV0f-M-5oj8GkA7qrGbJ8cLM9my0U8Rf-bwV-HzvmDn6bxcSKPcjLIVejM5iAr_0umGc24vL6YyovzRf4txbm8jvy7gbfKSXXjqyCvLgnCHCHMRPxA9C-ADLOt</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Dunson, D. B.</creator><creator>Holloman, C.</creator><creator>Calder, C.</creator><creator>Gunn, L. H.</creator><general>Blackwell Publishing</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200409</creationdate><title>Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data</title><author>Dunson, D. B. ; Holloman, C. ; Calder, C. ; Gunn, L. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biometrics</topic><topic>Biometry</topic><topic>Cross-Sectional Studies</topic><topic>Data models</topic><topic>Disease models</topic><topic>Female</topic><topic>Humans</topic><topic>Interval counts</topic><topic>Interval-censored</topic><topic>Leiomyoma</topic><topic>Leiomyomatosis - etiology</topic><topic>Leiomyomatosis - pathology</topic><topic>Lesions</topic><topic>Markov analysis</topic><topic>Markov chain</topic><topic>Markov Chains</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Multiple event times</topic><topic>Musical intervals</topic><topic>neoplasms</topic><topic>Neoplasms - etiology</topic><topic>Neoplasms - pathology</topic><topic>Panel counts</topic><topic>Parametric models</topic><topic>Patient assessment</topic><topic>Poisson process</topic><topic>Recurrent events</topic><topic>screening</topic><topic>Screening data</topic><topic>Stochastic Processes</topic><topic>Surrogacy</topic><topic>Time Factors</topic><topic>Tumor multiplicity</topic><topic>Tumors</topic><topic>Uterine Neoplasms - etiology</topic><topic>Uterine Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunson, D. B.</creatorcontrib><creatorcontrib>Holloman, C.</creatorcontrib><creatorcontrib>Calder, C.</creatorcontrib><creatorcontrib>Gunn, L. H.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunson, D. B.</au><au>Holloman, C.</au><au>Calder, C.</au><au>Gunn, L. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2004-09</date><risdate>2004</risdate><volume>60</volume><issue>3</issue><spage>676</spage><epage>683</epage><pages>676-683</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>In studying rates of occurrence and progression of lesions (or tumors), it is typically not possible to obtain exact onset times for each lesion. Instead, data consist of the number of lesions that reach a detectable size between screening examinations, along with measures of the size/severity of individual lesions at each exam time. This interval‐censored data structure makes it difficult to properly adjust for the onset time distribution in assessing covariate effects on rates of lesion progression. This article proposes a joint model for the multiple lesion onset and progression process, motivated by cross‐sectional data from a study of uterine leiomyoma tumors. By using a joint model, one can potentially obtain more precise inferences on rates of onset, while also performing onset time‐adjusted inferences on lesion severity. Following a Bayesian approach, we propose a data augmentation Markov chain Monte Carlo algorithm for posterior computation.</abstract><cop>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K</cop><pub>Blackwell Publishing</pub><pmid>15339290</pmid><doi>10.1111/j.0006-341X.2004.00217.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2004-09, Vol.60 (3), p.676-683
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_66837395
source EBSCOhost SPORTDiscus with Full Text; JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Adult
Algorithms
Bayes Theorem
Bayesian analysis
Biometrics
Biometry
Cross-Sectional Studies
Data models
Disease models
Female
Humans
Interval counts
Interval-censored
Leiomyoma
Leiomyomatosis - etiology
Leiomyomatosis - pathology
Lesions
Markov analysis
Markov chain
Markov Chains
Middle Aged
Models, Statistical
Monte Carlo Method
Monte Carlo simulation
Multiple event times
Musical intervals
neoplasms
Neoplasms - etiology
Neoplasms - pathology
Panel counts
Parametric models
Patient assessment
Poisson process
Recurrent events
screening
Screening data
Stochastic Processes
Surrogacy
Time Factors
Tumor multiplicity
Tumors
Uterine Neoplasms - etiology
Uterine Neoplasms - pathology
title Bayesian Modeling of Multiple Lesion Onset and Growth from Interval‐Censored Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Modeling%20of%20Multiple%20Lesion%20Onset%20and%20Growth%20from%20Interval%E2%80%90Censored%20Data&rft.jtitle=Biometrics&rft.au=Dunson,%20D.%20B.&rft.date=2004-09&rft.volume=60&rft.issue=3&rft.spage=676&rft.epage=683&rft.pages=676-683&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.2004.00217.x&rft_dat=%3Cjstor_proqu%3E3695389%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4757-d8fd3050bcbb9ad22c80abea2c204fed8ebff4ad79dada62abc1b18615f212c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=888145848&rft_id=info:pmid/15339290&rft_jstor_id=3695389&rfr_iscdi=true