Loading…

Immune receptors for polysaccharides from Ganoderma lucidum

This study was designed to identify and characterize the immune receptors for polysaccharides from Ganoderma lucidum, a Chinese medicinal fungus that exhibits anti-tumor activities via enhancing host immunity. We herein demonstrate that G. lucidum polysaccharides (GLPS) activated BALB/c mouse B cell...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2004-10, Vol.323 (1), p.133-141
Main Authors: Shao, Bao-Mei, Dai, Hui, Xu, Wen, Lin, Zhi-Bin, Gao, Xiao-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study was designed to identify and characterize the immune receptors for polysaccharides from Ganoderma lucidum, a Chinese medicinal fungus that exhibits anti-tumor activities via enhancing host immunity. We herein demonstrate that G. lucidum polysaccharides (GLPS) activated BALB/c mouse B cells and macrophages, but not T cells, in vitro. However, GLPS was unable to activate splenic B cells from C3H/HeJ mice that have a mutated TLR4 molecule (incapable of signal transduction) in proliferation assays. Rat anti-mouse TLR4 monoclonal antibody (Ab) inhibited the proliferation of BALB/c mouse B cells under GLPS stimulation. Combination of Abs against mouse TLR4 and immunoglobulin (Ig) achieved almost complete inhibition of GLPS-induced B cell proliferation, implying that both membrane Ig and TLR4 are required for GLPS-mediated B cell activation. In addition, GLPS significantly inhibited the binding of mouse peritoneal macrophages with polysaccharides from Astragalus membranaceus, which is known to bind directly with TLR4 on macrophage surface. Moreover, GLPS induced IL-1β production by peritoneal macrophages from BALB/c, but not C3H/HeJ, mice, suggesting that TLR4 is also involved in GLPS-mediated macrophage activation. We Further identified a unique 31 kDa serum protein and two intracellular proteins (ribosomal protein S7 and a transcriptional coactivator) capable of binding with GLPS in co-precipitation experiments. Our results may have important implications for our understanding on the molecular mechanisms of immunopotentiating polysaccharides from traditional Chinese medicine.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2004.08.069