Loading…

Total Synthesis of the Potent Anticancer Aglaia Metabolites (−)-Silvestrol and (−)-Episilvestrol and the Active Analogue (−)-4′-Desmethoxyepisilvestrol

Total synthesis of the anticancer 1,4-dioxane containing natural products silvestrol (1) and episilvestrol (2) is described by an approach based on the proposed biosynthesis of these novel compounds. The key steps included an oxidative rearrangement of the protected d-glucose derivative 11 to afford...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2009-02, Vol.131 (4), p.1607-1616
Main Authors: Adams, Tim E, El Sous, Mariana, Hawkins, Bill C, Hirner, Sebastian, Holloway, Georgina, Khoo, Mui Ling, Owen, David J, Savage, G. Paul, Scammells, Peter J, Rizzacasa, Mark A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Total synthesis of the anticancer 1,4-dioxane containing natural products silvestrol (1) and episilvestrol (2) is described by an approach based on the proposed biosynthesis of these novel compounds. The key steps included an oxidative rearrangement of the protected d-glucose derivative 11 to afford the 1,4-dioxane 12, which could be elaborated to the coupling partner 5 and a photochemical [3 + 2]-cycloadditon between the 3-hydroxyflavone 27 and methyl cinnamate followed by base-induced α-ketol rearrangement and reduction to give the cyclopentabenzofuran core 33. The core (−)-6 and 1,4-dioxane fragment 5 were united by a highly stereoselective Mitsunobu coupling with the modified azodicarboxylate DMEAD to afford the axial coupled product 36. Deprotection then gave episilvestrol (2). Silvestrol (1) was synthesized by a coupling between core (−)-6 and the dioxane 44 followed by deprotection. Compound 1 was also synthesized from episilvestrol (2) by a Mitsunobu inversion. In addition, the analogue 4′-desmethoxyepisilvestrol (46) was synthesized via the same route. It was found that 46 and episilvestrol 2 displayed an unexpected concentration-dependent chemical shift variation for the nonexchangeable dioxane protons. Synthetic compounds 1, 2, 38, 46, and 54 were tested against cancer cells lines, and it was found that the stereochemistry of the core was critical for activity. Synthetic analogue 4′-desmethoxyepisilvestrol (46) was also active against lung and colon cancer cell lines.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja808402e