Loading…
New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis
Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model asso...
Saved in:
Published in: | Bioinformatics 2009-02, Vol.25 (3), p.338-345 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633 |
container_end_page | 345 |
container_issue | 3 |
container_start_page | 338 |
container_title | Bioinformatics |
container_volume | 25 |
creator | Namkung, Junghyun Kim, Kyunga Yi, Sungon Chung, Wonil Kwon, Min-Seok Park, Taesung |
description | Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures. Results: In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and τb improved the power of MDR in detecting gene–gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data. Contact: tspark@stats.snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btn629 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_66865237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn629</oup_id><sourcerecordid>20398954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633</originalsourceid><addsrcrecordid>eNqNkcuKFTEQhoMoznj0EZRG0F07uXXSWcqgjjIqMgqDm1CdrpaMfTmmutWz8x18Q5_EjH0Y0Y2uqgq-7w_hZ-yu4I8Ed-qoiVMcuykNMMdAR808GumusUOhDS8lr9z1vCtjS11zdcBuEV1wXgmt9U12IJwwWnF5yLav8EuBn6Ffcs40FgMCLQmpyNHFsPRz7CDMeW_jgCNlBPo474qE7RJ-GaEHothFTFTEsfiAI_749v1y5HPGBCsGWdxRpNvsRgc94Z393LB3T5-8PT4pT18_e378-LQM2uq5xNopa02wQtTIlZFdqzoApxvQss13C1LoSmJtZSM64aQDLrGtbRcqYZTasIdr7jZNnxak2Q-RAvY9jDgt5I2pTSWV_ScouXK1q3QG7_8FXkxLyt8iL1xtbMW1yFC1QiFNRAk7v01xgLTzgvvL4vyfxfm1uOzd24cvzYDtb2vfVAYe7AGgAH2XYAyRrjiZs0Wdq94wvnLTsv3vt8tViTTj1ysJ0kdvrLKVPzl_78_PjD178-KlN-onxMPKCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198675041</pqid></control><display><type>article</type><title>New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis</title><source>Open Access: Oxford University Press Open Journals</source><creator>Namkung, Junghyun ; Kim, Kyunga ; Yi, Sungon ; Chung, Wonil ; Kwon, Min-Seok ; Park, Taesung</creator><creatorcontrib>Namkung, Junghyun ; Kim, Kyunga ; Yi, Sungon ; Chung, Wonil ; Kwon, Min-Seok ; Park, Taesung</creatorcontrib><description>Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures. Results: In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and τb improved the power of MDR in detecting gene–gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data. Contact: tspark@stats.snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn629</identifier><identifier>PMID: 19164302</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Frequency ; General aspects ; Genetic Markers ; Genetic Predisposition to Disease ; Genotype ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><ispartof>Bioinformatics, 2009-02, Vol.25 (3), p.338-345</ispartof><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>2009 INIST-CNRS</rights><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633</citedby><cites>FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btn629$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21091880$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19164302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Namkung, Junghyun</creatorcontrib><creatorcontrib>Kim, Kyunga</creatorcontrib><creatorcontrib>Yi, Sungon</creatorcontrib><creatorcontrib>Chung, Wonil</creatorcontrib><creatorcontrib>Kwon, Min-Seok</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><title>New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures. Results: In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and τb improved the power of MDR in detecting gene–gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data. Contact: tspark@stats.snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Frequency</subject><subject>General aspects</subject><subject>Genetic Markers</subject><subject>Genetic Predisposition to Disease</subject><subject>Genotype</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkcuKFTEQhoMoznj0EZRG0F07uXXSWcqgjjIqMgqDm1CdrpaMfTmmutWz8x18Q5_EjH0Y0Y2uqgq-7w_hZ-yu4I8Ed-qoiVMcuykNMMdAR808GumusUOhDS8lr9z1vCtjS11zdcBuEV1wXgmt9U12IJwwWnF5yLav8EuBn6Ffcs40FgMCLQmpyNHFsPRz7CDMeW_jgCNlBPo474qE7RJ-GaEHothFTFTEsfiAI_749v1y5HPGBCsGWdxRpNvsRgc94Z393LB3T5-8PT4pT18_e378-LQM2uq5xNopa02wQtTIlZFdqzoApxvQss13C1LoSmJtZSM64aQDLrGtbRcqYZTasIdr7jZNnxak2Q-RAvY9jDgt5I2pTSWV_ScouXK1q3QG7_8FXkxLyt8iL1xtbMW1yFC1QiFNRAk7v01xgLTzgvvL4vyfxfm1uOzd24cvzYDtb2vfVAYe7AGgAH2XYAyRrjiZs0Wdq94wvnLTsv3vt8tViTTj1ysJ0kdvrLKVPzl_78_PjD178-KlN-onxMPKCw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Namkung, Junghyun</creator><creator>Kim, Kyunga</creator><creator>Yi, Sungon</creator><creator>Chung, Wonil</creator><creator>Kwon, Min-Seok</creator><creator>Park, Taesung</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis</title><author>Namkung, Junghyun ; Kim, Kyunga ; Yi, Sungon ; Chung, Wonil ; Kwon, Min-Seok ; Park, Taesung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Frequency</topic><topic>General aspects</topic><topic>Genetic Markers</topic><topic>Genetic Predisposition to Disease</topic><topic>Genotype</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namkung, Junghyun</creatorcontrib><creatorcontrib>Kim, Kyunga</creatorcontrib><creatorcontrib>Yi, Sungon</creatorcontrib><creatorcontrib>Chung, Wonil</creatorcontrib><creatorcontrib>Kwon, Min-Seok</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Namkung, Junghyun</au><au>Kim, Kyunga</au><au>Yi, Sungon</au><au>Chung, Wonil</au><au>Kwon, Min-Seok</au><au>Park, Taesung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>25</volume><issue>3</issue><spage>338</spage><epage>345</epage><pages>338-345</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures. Results: In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and τb improved the power of MDR in detecting gene–gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data. Contact: tspark@stats.snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19164302</pmid><doi>10.1093/bioinformatics/btn629</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2009-02, Vol.25 (3), p.338-345 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_66865237 |
source | Open Access: Oxford University Press Open Journals |
subjects | Biological and medical sciences Computer Simulation Fundamental and applied biological sciences. Psychology Gene Expression Gene Frequency General aspects Genetic Markers Genetic Predisposition to Disease Genotype Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) |
title | New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20evaluation%20measures%20for%20multifactor%20dimensionality%20reduction%20classifiers%20in%20gene%E2%80%93gene%20interaction%20analysis&rft.jtitle=Bioinformatics&rft.au=Namkung,%20Junghyun&rft.date=2009-02-01&rft.volume=25&rft.issue=3&rft.spage=338&rft.epage=345&rft.pages=338-345&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn629&rft_dat=%3Cproquest_TOX%3E20398954%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198675041&rft_id=info:pmid/19164302&rft_oup_id=10.1093/bioinformatics/btn629&rfr_iscdi=true |