Loading…

New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis

Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model asso...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2009-02, Vol.25 (3), p.338-345
Main Authors: Namkung, Junghyun, Kim, Kyunga, Yi, Sungon, Chung, Wonil, Kwon, Min-Seok, Park, Taesung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633
cites cdi_FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633
container_end_page 345
container_issue 3
container_start_page 338
container_title Bioinformatics
container_volume 25
creator Namkung, Junghyun
Kim, Kyunga
Yi, Sungon
Chung, Wonil
Kwon, Min-Seok
Park, Taesung
description Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures. Results: In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and τb improved the power of MDR in detecting gene–gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data. Contact: tspark@stats.snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btn629
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_66865237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn629</oup_id><sourcerecordid>20398954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633</originalsourceid><addsrcrecordid>eNqNkcuKFTEQhoMoznj0EZRG0F07uXXSWcqgjjIqMgqDm1CdrpaMfTmmutWz8x18Q5_EjH0Y0Y2uqgq-7w_hZ-yu4I8Ed-qoiVMcuykNMMdAR808GumusUOhDS8lr9z1vCtjS11zdcBuEV1wXgmt9U12IJwwWnF5yLav8EuBn6Ffcs40FgMCLQmpyNHFsPRz7CDMeW_jgCNlBPo474qE7RJ-GaEHothFTFTEsfiAI_749v1y5HPGBCsGWdxRpNvsRgc94Z393LB3T5-8PT4pT18_e378-LQM2uq5xNopa02wQtTIlZFdqzoApxvQss13C1LoSmJtZSM64aQDLrGtbRcqYZTasIdr7jZNnxak2Q-RAvY9jDgt5I2pTSWV_ScouXK1q3QG7_8FXkxLyt8iL1xtbMW1yFC1QiFNRAk7v01xgLTzgvvL4vyfxfm1uOzd24cvzYDtb2vfVAYe7AGgAH2XYAyRrjiZs0Wdq94wvnLTsv3vt8tViTTj1ysJ0kdvrLKVPzl_78_PjD178-KlN-onxMPKCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198675041</pqid></control><display><type>article</type><title>New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis</title><source>Open Access: Oxford University Press Open Journals</source><creator>Namkung, Junghyun ; Kim, Kyunga ; Yi, Sungon ; Chung, Wonil ; Kwon, Min-Seok ; Park, Taesung</creator><creatorcontrib>Namkung, Junghyun ; Kim, Kyunga ; Yi, Sungon ; Chung, Wonil ; Kwon, Min-Seok ; Park, Taesung</creatorcontrib><description>Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures. Results: In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and τb improved the power of MDR in detecting gene–gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data. Contact: tspark@stats.snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn629</identifier><identifier>PMID: 19164302</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Frequency ; General aspects ; Genetic Markers ; Genetic Predisposition to Disease ; Genotype ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><ispartof>Bioinformatics, 2009-02, Vol.25 (3), p.338-345</ispartof><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>2009 INIST-CNRS</rights><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633</citedby><cites>FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btn629$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21091880$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19164302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Namkung, Junghyun</creatorcontrib><creatorcontrib>Kim, Kyunga</creatorcontrib><creatorcontrib>Yi, Sungon</creatorcontrib><creatorcontrib>Chung, Wonil</creatorcontrib><creatorcontrib>Kwon, Min-Seok</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><title>New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures. Results: In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and τb improved the power of MDR in detecting gene–gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data. Contact: tspark@stats.snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Frequency</subject><subject>General aspects</subject><subject>Genetic Markers</subject><subject>Genetic Predisposition to Disease</subject><subject>Genotype</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkcuKFTEQhoMoznj0EZRG0F07uXXSWcqgjjIqMgqDm1CdrpaMfTmmutWz8x18Q5_EjH0Y0Y2uqgq-7w_hZ-yu4I8Ed-qoiVMcuykNMMdAR808GumusUOhDS8lr9z1vCtjS11zdcBuEV1wXgmt9U12IJwwWnF5yLav8EuBn6Ffcs40FgMCLQmpyNHFsPRz7CDMeW_jgCNlBPo474qE7RJ-GaEHothFTFTEsfiAI_749v1y5HPGBCsGWdxRpNvsRgc94Z393LB3T5-8PT4pT18_e378-LQM2uq5xNopa02wQtTIlZFdqzoApxvQss13C1LoSmJtZSM64aQDLrGtbRcqYZTasIdr7jZNnxak2Q-RAvY9jDgt5I2pTSWV_ScouXK1q3QG7_8FXkxLyt8iL1xtbMW1yFC1QiFNRAk7v01xgLTzgvvL4vyfxfm1uOzd24cvzYDtb2vfVAYe7AGgAH2XYAyRrjiZs0Wdq94wvnLTsv3vt8tViTTj1ysJ0kdvrLKVPzl_78_PjD178-KlN-onxMPKCw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Namkung, Junghyun</creator><creator>Kim, Kyunga</creator><creator>Yi, Sungon</creator><creator>Chung, Wonil</creator><creator>Kwon, Min-Seok</creator><creator>Park, Taesung</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis</title><author>Namkung, Junghyun ; Kim, Kyunga ; Yi, Sungon ; Chung, Wonil ; Kwon, Min-Seok ; Park, Taesung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Frequency</topic><topic>General aspects</topic><topic>Genetic Markers</topic><topic>Genetic Predisposition to Disease</topic><topic>Genotype</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namkung, Junghyun</creatorcontrib><creatorcontrib>Kim, Kyunga</creatorcontrib><creatorcontrib>Yi, Sungon</creatorcontrib><creatorcontrib>Chung, Wonil</creatorcontrib><creatorcontrib>Kwon, Min-Seok</creatorcontrib><creatorcontrib>Park, Taesung</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Namkung, Junghyun</au><au>Kim, Kyunga</au><au>Yi, Sungon</au><au>Chung, Wonil</au><au>Kwon, Min-Seok</au><au>Park, Taesung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>25</volume><issue>3</issue><spage>338</spage><epage>345</epage><pages>338-345</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Gene–gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene–gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures. Results: In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and τb improved the power of MDR in detecting gene–gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data. Contact: tspark@stats.snu.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19164302</pmid><doi>10.1093/bioinformatics/btn629</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2009-02, Vol.25 (3), p.338-345
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_66865237
source Open Access: Oxford University Press Open Journals
subjects Biological and medical sciences
Computer Simulation
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Frequency
General aspects
Genetic Markers
Genetic Predisposition to Disease
Genotype
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
title New evaluation measures for multifactor dimensionality reduction classifiers in gene–gene interaction analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20evaluation%20measures%20for%20multifactor%20dimensionality%20reduction%20classifiers%20in%20gene%E2%80%93gene%20interaction%20analysis&rft.jtitle=Bioinformatics&rft.au=Namkung,%20Junghyun&rft.date=2009-02-01&rft.volume=25&rft.issue=3&rft.spage=338&rft.epage=345&rft.pages=338-345&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn629&rft_dat=%3Cproquest_TOX%3E20398954%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-e893776c7118e0362fd3faa94ba42d362da21452e872b1f1929a02ed87fc51633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198675041&rft_id=info:pmid/19164302&rft_oup_id=10.1093/bioinformatics/btn629&rfr_iscdi=true