Loading…

Gene-Transferring Efficiencies of Novel Diamino Cationic Lipids with Varied Hydrocarbon Chains

Utilizing three biocompatible components, a series of novel cationic lipids has been chemically synthesized and tested for their gene-transferring capabilities in 293 transformed kidney cells and B16BL6 mouse melanoma cells. The synthesized cationic lipids consisting of a core of lysine and aspartic...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry 2004-09, Vol.15 (5), p.1095-1101
Main Authors: Kim, Hong Sung, Moon, Jaeho, Kim, Keun Sik, Choi, Myung Min, Lee, Ji Eun, Heo, Yeon, Cho, Dae Hyan, Jang, Doo Ok, Park, Yong Serk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Utilizing three biocompatible components, a series of novel cationic lipids has been chemically synthesized and tested for their gene-transferring capabilities in 293 transformed kidney cells and B16BL6 mouse melanoma cells. The synthesized cationic lipids consisting of a core of lysine and aspartic acid with hydrocarbon chains of varied length were assigned the acronyms DLKD (O,O‘-dilauryl N-lysylaspartate), DMKD (O,O‘-dimyristyl N-lysylaspartate), DPKD (O,O‘-dipalmityl N-lysylaspartate), and DSKD (O,O‘-distearyl N-lysylaspartate). The gene-transferring capabilities of these cationic lipids were found to be dependent on the hydrocarbon chain length. Under similar experimental conditions, the order of gene transfection efficiency was DMKD > DLKD > DPKD > DSKD. Addition of cholesterol or dioleoyl phosphatidylethanolamine (DOPE) as a colipid did not change this order. Colipid addition affected the transfection efficiency positively or negatively depending on the length of the cationic lipid acyl chain. On the whole, the length of the hydrophobic carbon chain was a major factor governing the gene-transferring capabilities of this series of cationic lipids. The observed differences in transfection efficiency may be due to differing binding affinities to DNA molecules as well as differences in the surface charge potential of the liposome−DNA complexes (lipoplexes) in the aqueous environment.
ISSN:1043-1802
1520-4812
DOI:10.1021/bc049934t