Loading…
Extraordinary transmittance in three dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films
We used a reversal imprinting-in-metal (RIM) process to fabricate various three-dimensional (3D) metal structures under low pressure. Molds featuring different shapes were used to pattern various subwavelength metal structures, including pyramidal, hole-array, and crater-like structures. Refractive...
Saved in:
Published in: | Optics express 2009-02, Vol.17 (3), p.1636-1645 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We used a reversal imprinting-in-metal (RIM) process to fabricate various three-dimensional (3D) metal structures under low pressure. Molds featuring different shapes were used to pattern various subwavelength metal structures, including pyramidal, hole-array, and crater-like structures. Refractive index matching and cavity effects both enhanced the degree of transmission of these structured metal films. The crater-like structure appears to be a promising material because of the unique properties imparted by the elongated and gradually tapering spacing of its cavities. From both near-field simulations and experimentally obtained optical spectra, we found that the cavity effect in the crater-like structure led to significantly enhanced transmission of the optical intensity. Thus, this RIM process allows the ready fabrication of various two- and three-dimensional metallic structures for use in surface plasmon-based devices. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.17.001636 |