Loading…

Genetic Targeting of Relaxin and Insulin-Like Factor 3 Receptors in Mice

Relaxin (RLN) is a small peptide hormone that affects a variety of biological processes. Rln1 knockout mice exhibit abnormal nipple development, prolonged parturition, agerelated pulmonary fibrosis, and abnormalities in the testes and prostate. We describe here RLN receptor Lgr7-deficient mice. Muta...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2004-10, Vol.145 (10), p.4712-4720
Main Authors: Kamat, Aparna A, Feng, Shu, Bogatcheva, Natalia V, Truong, Anne, Bishop, Colin E, Agoulnik, Alexander I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Relaxin (RLN) is a small peptide hormone that affects a variety of biological processes. Rln1 knockout mice exhibit abnormal nipple development, prolonged parturition, agerelated pulmonary fibrosis, and abnormalities in the testes and prostate. We describe here RLN receptor Lgr7-deficient mice. Mutant females have grossly underdeveloped nipples and are unable to feed their progeny. Some Lgr7−/− females were unable to deliver their pups. Histological analysis of Lgr7 mutant lung tissues demonstrates increased collagen accumulation and fibrosis surrounding the bronchioles and the vascular bundles, absent in wild-type animals. However, Lgr7-deficient males do not exhibit abnormalities in the testes or prostate as seen in Rln1 knockout mice. Lgr7-deficient females with additional deletion of Lgr8 (Great), another putative receptor for RLN, are fertile and have normal-sized litters. Double mutant males have normal-sized prostate and testes, suggesting that Lgr8 does not account for differences in Rln1−/− and Lgr7−/− phenotypes. Transgenic overexpression of Insl3, the cognate ligand for Lgr8, does not rescue the mutant phenotype of Lgr7-deficient female mice indicating nonoverlapping functions of the two receptors. Our data indicate that neither Insl3 nor Lgr8 contribute to the RLN signaling pathway. We conclude that the Insl3/Lgr8 and Rln1/Lgr7 actions do not overlap in vivo.
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2004-0515