Loading…

neuropeptidome of Rhodnius prolixus brain

We show a sensitive and straightforward off-line nano-LC-MALDI-MS/MS workflow that allowed the first comprehensive neuropeptidomic analysis of an insect disease vector. This approach was applied to identify neuropeptides in the brain of Rhodnius prolixus, a vector of Chagas disease. This work will c...

Full description

Saved in:
Bibliographic Details
Published in:Proteomics (Weinheim) 2009-02, Vol.9 (3), p.788-792
Main Authors: Ons, Sheila, Richter, Florian, Urlaub, Henning, Pomar, Rolando Rivera
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show a sensitive and straightforward off-line nano-LC-MALDI-MS/MS workflow that allowed the first comprehensive neuropeptidomic analysis of an insect disease vector. This approach was applied to identify neuropeptides in the brain of Rhodnius prolixus, a vector of Chagas disease. This work will contribute to the annotation of genes in the ongoing R. prolixus genome sequence project. Peptides were identified by de novo sequencing and comparisons to known neuropeptides from different organisms by database search. By these means, we were able to identify 42 novel neuropeptides from R. prolixus. The peptides were classified as extended FMRF-amide-related peptides, sulfakinins, myosuppressins, short neuropeptide F, long neuropeptide F, SIF-amide-related peptides, tachykinins, orcokinins, allatostatins, allatotropins, calcitonin-like diuretic hormones, corazonin, and pyrokinin. Some of them were detected in multiple isoforms and/or truncated fragments. Interestingly, some of the R. prolixus peptides, as myosuppressin and sulfakinins, are unique in their characteristic C-terminal domain among insect neuropeptides identified so far.
ISSN:1615-9853
1615-9861
DOI:10.1002/pmic.200800499