Loading…

SUMO Modification of Septin-interacting Proteins in Candida albicans

The initiation of bud and hyphal growth in the opportunistic fungal pathogen Candida albicans both involve polarized morphogenesis. However, there are many differences including the function of the septin proteins, a family of proteins involved in membrane organization in a wide range of organisms....

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-09, Vol.279 (39), p.40861-40867
Main Authors: Martin, Stephen W., Konopka, James B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The initiation of bud and hyphal growth in the opportunistic fungal pathogen Candida albicans both involve polarized morphogenesis. However, there are many differences including the function of the septin proteins, a family of proteins involved in membrane organization in a wide range of organisms. Septins form a characteristic ring on the inner surface of the plasma membrane at the bud neck, whereas the septins are diffusely localized across emerging hyphal tips. In addition, septin rings are maintained at sites of septum formation in hyphae rather than being disassembled immediately after cytokinesis. The possibility that C. albicans septins are regulated by the small ubiquitin-like protein SUMO was examined in this study because the Saccharomyces cerevisiae septins were shown previously to be modified by SUMO (Smt3p). However, SUMO conjugation to septins was not detected during budding or hyphal morphogenesis in C. albicans. These results are supported by the lack of conserved SUMO consensus motifs between septins from the two organisms even after adjusting the predicted Cdc3p and Cdc12p septin sequences to account for mRNA splicing in C. albicans. Interestingly, a homolog of the Smt3p SUMO was identified in the C. albicans genome, and an epitope tagged version of Smt3p was conjugated to a variety of proteins. Immunofluorescence analysis showed prominent Smt3p SUMO localization at bud necks and sites of septum formation in hyphae similar to the septins. However, Smt3p was primarily detected on the mother cell side of the septin ring. A subset of these Smt3p-modified proteins co-immunoprecipitated with the septin Cdc11p. These results indicate that septin-associated proteins and not the septins themselves are the key target of SUMO modification at the bud neck in C. albicans.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M406422200