Loading…

Posttranslational Modification of Brain Tubulins from the Antarctic Fish Notothenia coriiceps:  Reduced C-Terminal Glutamylation Correlates with Efficient Microtubule Assembly at Low Temperature

We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (−2 to +2 °C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adap...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2004-09, Vol.43 (38), p.12265-12274
Main Authors: Redeker, Virginie, Frankfurter, Anthony, Parker, Sandra K, Rossier, Jean, Detrich, H. William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a295t-135c2b8ccdeed30164994d55fe998486e04cbf59933c00c669bb96cfb84aa4ee3
cites cdi_FETCH-LOGICAL-a295t-135c2b8ccdeed30164994d55fe998486e04cbf59933c00c669bb96cfb84aa4ee3
container_end_page 12274
container_issue 38
container_start_page 12265
container_title Biochemistry (Easton)
container_volume 43
creator Redeker, Virginie
Frankfurter, Anthony
Parker, Sandra K
Rossier, Jean
Detrich, H. William
description We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (−2 to +2 °C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adaptation of microtubule assembly, we have characterized C-terminal peptides from α- and β-tubulin chains from brains of adult specimens of the Antarctic rockcod Notothenia coriiceps by MALDI-TOF mass spectrometry and by Edman degradation amino acid sequencing. Of the four fish β-tubulin isotypes, nonglutamylated isoforms were more abundant than glutamylated isoforms. In addition, maximal glutamyl side-chain length was shorter than that observed for mammalian brain β tubulins. For the nine fish α-tubulin isotypes, nonglutamylated isoforms were also generally more abundant than glutamylated isoforms. When glutamylated, however, the maximal side-chain lengths of the fish α tubulins were generally longer than those of adult rat brain α chains. Thus, Antarctic fish adult brain tubulins are glutamylated differently than mammalian brain tubulins, resulting in a more heterogeneous population of α isoforms and a reduction in the number of β isoforms. By contrast, neonatal rat brain tubulin possesses low levels of glutamylation that are similar to that of the adult fish brain tubulins. We suggest that unique residue substitutions in the primary structures of Antarctic fish tubulin isotypes and quantitative changes in isoform glutamylation act synergistically to adapt microtubule assembly to low temperatures.
doi_str_mv 10.1021/bi049070z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66892979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17319999</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-135c2b8ccdeed30164994d55fe998486e04cbf59933c00c669bb96cfb84aa4ee3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EotvCgRdAvoDEIcVOYifmVlbdttIuVDT0ajnOROuSxIvtqF1OXPtefRKeBC9ZlQsSvthjf5pP4x-hV5QcU5LS97UhuSAF-fEEzShLSZILwZ6iGSGEJ6ng5AAden8Ty5wU-XN0QFlWCMbZDD1cWh-CU4PvVDB2UB1e2ca0Rv8psW3xR6fMgKuxHjszeNw62-OwBnwyBOV0MBovjF_jTzbYeD0YhbV1xmjY-A-_ft7jL9CMGho8TypwvdkpzroxqH47KfHcOgfxDB7fmrDGp23UGxgCXhntbNiZo8576Otui1XAS3uLK-g34FQYHbxAz1rVeXi534_Q18VpNT9Plp_PLuYny0SlgoWEZkyndal1A9BkhPL4TXnDWAtClHnJgeS6bpkQWaYJ0ZyLuhZct3WZK5UDZEfo7dR34-z3EXyQvfEauk4NYEcvOS9FKgrxX5AWGRVxRfDdBMY5vXfQyo0zvXJbSYncZSsfs43s633Tse6h-Uvuw4xAMgHGB7h7fFfum-RFVjBZXV7J1TU9v14UXF5F_s3EK-3ljR1djMb_Q_wb5BTAhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17319999</pqid></control><display><type>article</type><title>Posttranslational Modification of Brain Tubulins from the Antarctic Fish Notothenia coriiceps:  Reduced C-Terminal Glutamylation Correlates with Efficient Microtubule Assembly at Low Temperature</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Redeker, Virginie ; Frankfurter, Anthony ; Parker, Sandra K ; Rossier, Jean ; Detrich, H. William</creator><creatorcontrib>Redeker, Virginie ; Frankfurter, Anthony ; Parker, Sandra K ; Rossier, Jean ; Detrich, H. William</creatorcontrib><description>We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (−2 to +2 °C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adaptation of microtubule assembly, we have characterized C-terminal peptides from α- and β-tubulin chains from brains of adult specimens of the Antarctic rockcod Notothenia coriiceps by MALDI-TOF mass spectrometry and by Edman degradation amino acid sequencing. Of the four fish β-tubulin isotypes, nonglutamylated isoforms were more abundant than glutamylated isoforms. In addition, maximal glutamyl side-chain length was shorter than that observed for mammalian brain β tubulins. For the nine fish α-tubulin isotypes, nonglutamylated isoforms were also generally more abundant than glutamylated isoforms. When glutamylated, however, the maximal side-chain lengths of the fish α tubulins were generally longer than those of adult rat brain α chains. Thus, Antarctic fish adult brain tubulins are glutamylated differently than mammalian brain tubulins, resulting in a more heterogeneous population of α isoforms and a reduction in the number of β isoforms. By contrast, neonatal rat brain tubulin possesses low levels of glutamylation that are similar to that of the adult fish brain tubulins. We suggest that unique residue substitutions in the primary structures of Antarctic fish tubulin isotypes and quantitative changes in isoform glutamylation act synergistically to adapt microtubule assembly to low temperatures.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi049070z</identifier><identifier>PMID: 15379565</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aging - physiology ; Amino Acid Sequence ; Animals ; Animals, Newborn ; Antarctic Regions ; Brain - metabolism ; Chromatography, High Pressure Liquid ; Cold Temperature ; DNA, Complementary - genetics ; Glutamine - metabolism ; Microtubules - chemistry ; Microtubules - metabolism ; Molecular Sequence Data ; Notothenia coriiceps ; Perciformes - genetics ; Protein Isoforms - chemistry ; Protein Isoforms - metabolism ; Protein Processing, Post-Translational ; Proteomics ; Rats ; Sequence Alignment ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Tubulin - chemistry ; Tubulin - metabolism</subject><ispartof>Biochemistry (Easton), 2004-09, Vol.43 (38), p.12265-12274</ispartof><rights>Copyright © 2004 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-135c2b8ccdeed30164994d55fe998486e04cbf59933c00c669bb96cfb84aa4ee3</citedby><cites>FETCH-LOGICAL-a295t-135c2b8ccdeed30164994d55fe998486e04cbf59933c00c669bb96cfb84aa4ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15379565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Redeker, Virginie</creatorcontrib><creatorcontrib>Frankfurter, Anthony</creatorcontrib><creatorcontrib>Parker, Sandra K</creatorcontrib><creatorcontrib>Rossier, Jean</creatorcontrib><creatorcontrib>Detrich, H. William</creatorcontrib><title>Posttranslational Modification of Brain Tubulins from the Antarctic Fish Notothenia coriiceps:  Reduced C-Terminal Glutamylation Correlates with Efficient Microtubule Assembly at Low Temperature</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (−2 to +2 °C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adaptation of microtubule assembly, we have characterized C-terminal peptides from α- and β-tubulin chains from brains of adult specimens of the Antarctic rockcod Notothenia coriiceps by MALDI-TOF mass spectrometry and by Edman degradation amino acid sequencing. Of the four fish β-tubulin isotypes, nonglutamylated isoforms were more abundant than glutamylated isoforms. In addition, maximal glutamyl side-chain length was shorter than that observed for mammalian brain β tubulins. For the nine fish α-tubulin isotypes, nonglutamylated isoforms were also generally more abundant than glutamylated isoforms. When glutamylated, however, the maximal side-chain lengths of the fish α tubulins were generally longer than those of adult rat brain α chains. Thus, Antarctic fish adult brain tubulins are glutamylated differently than mammalian brain tubulins, resulting in a more heterogeneous population of α isoforms and a reduction in the number of β isoforms. By contrast, neonatal rat brain tubulin possesses low levels of glutamylation that are similar to that of the adult fish brain tubulins. We suggest that unique residue substitutions in the primary structures of Antarctic fish tubulin isotypes and quantitative changes in isoform glutamylation act synergistically to adapt microtubule assembly to low temperatures.</description><subject>Aging - physiology</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Antarctic Regions</subject><subject>Brain - metabolism</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Cold Temperature</subject><subject>DNA, Complementary - genetics</subject><subject>Glutamine - metabolism</subject><subject>Microtubules - chemistry</subject><subject>Microtubules - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Notothenia coriiceps</subject><subject>Perciformes - genetics</subject><subject>Protein Isoforms - chemistry</subject><subject>Protein Isoforms - metabolism</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Sequence Alignment</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Tubulin - chemistry</subject><subject>Tubulin - metabolism</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi0EotvCgRdAvoDEIcVOYifmVlbdttIuVDT0ajnOROuSxIvtqF1OXPtefRKeBC9ZlQsSvthjf5pP4x-hV5QcU5LS97UhuSAF-fEEzShLSZILwZ6iGSGEJ6ng5AAden8Ty5wU-XN0QFlWCMbZDD1cWh-CU4PvVDB2UB1e2ca0Rv8psW3xR6fMgKuxHjszeNw62-OwBnwyBOV0MBovjF_jTzbYeD0YhbV1xmjY-A-_ft7jL9CMGho8TypwvdkpzroxqH47KfHcOgfxDB7fmrDGp23UGxgCXhntbNiZo8576Otui1XAS3uLK-g34FQYHbxAz1rVeXi534_Q18VpNT9Plp_PLuYny0SlgoWEZkyndal1A9BkhPL4TXnDWAtClHnJgeS6bpkQWaYJ0ZyLuhZct3WZK5UDZEfo7dR34-z3EXyQvfEauk4NYEcvOS9FKgrxX5AWGRVxRfDdBMY5vXfQyo0zvXJbSYncZSsfs43s633Tse6h-Uvuw4xAMgHGB7h7fFfum-RFVjBZXV7J1TU9v14UXF5F_s3EK-3ljR1djMb_Q_wb5BTAhQ</recordid><startdate>20040928</startdate><enddate>20040928</enddate><creator>Redeker, Virginie</creator><creator>Frankfurter, Anthony</creator><creator>Parker, Sandra K</creator><creator>Rossier, Jean</creator><creator>Detrich, H. William</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20040928</creationdate><title>Posttranslational Modification of Brain Tubulins from the Antarctic Fish Notothenia coriiceps:  Reduced C-Terminal Glutamylation Correlates with Efficient Microtubule Assembly at Low Temperature</title><author>Redeker, Virginie ; Frankfurter, Anthony ; Parker, Sandra K ; Rossier, Jean ; Detrich, H. William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-135c2b8ccdeed30164994d55fe998486e04cbf59933c00c669bb96cfb84aa4ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aging - physiology</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Antarctic Regions</topic><topic>Brain - metabolism</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Cold Temperature</topic><topic>DNA, Complementary - genetics</topic><topic>Glutamine - metabolism</topic><topic>Microtubules - chemistry</topic><topic>Microtubules - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Notothenia coriiceps</topic><topic>Perciformes - genetics</topic><topic>Protein Isoforms - chemistry</topic><topic>Protein Isoforms - metabolism</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Sequence Alignment</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Tubulin - chemistry</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Redeker, Virginie</creatorcontrib><creatorcontrib>Frankfurter, Anthony</creatorcontrib><creatorcontrib>Parker, Sandra K</creatorcontrib><creatorcontrib>Rossier, Jean</creatorcontrib><creatorcontrib>Detrich, H. William</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Redeker, Virginie</au><au>Frankfurter, Anthony</au><au>Parker, Sandra K</au><au>Rossier, Jean</au><au>Detrich, H. William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posttranslational Modification of Brain Tubulins from the Antarctic Fish Notothenia coriiceps:  Reduced C-Terminal Glutamylation Correlates with Efficient Microtubule Assembly at Low Temperature</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2004-09-28</date><risdate>2004</risdate><volume>43</volume><issue>38</issue><spage>12265</spage><epage>12274</epage><pages>12265-12274</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (−2 to +2 °C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adaptation of microtubule assembly, we have characterized C-terminal peptides from α- and β-tubulin chains from brains of adult specimens of the Antarctic rockcod Notothenia coriiceps by MALDI-TOF mass spectrometry and by Edman degradation amino acid sequencing. Of the four fish β-tubulin isotypes, nonglutamylated isoforms were more abundant than glutamylated isoforms. In addition, maximal glutamyl side-chain length was shorter than that observed for mammalian brain β tubulins. For the nine fish α-tubulin isotypes, nonglutamylated isoforms were also generally more abundant than glutamylated isoforms. When glutamylated, however, the maximal side-chain lengths of the fish α tubulins were generally longer than those of adult rat brain α chains. Thus, Antarctic fish adult brain tubulins are glutamylated differently than mammalian brain tubulins, resulting in a more heterogeneous population of α isoforms and a reduction in the number of β isoforms. By contrast, neonatal rat brain tubulin possesses low levels of glutamylation that are similar to that of the adult fish brain tubulins. We suggest that unique residue substitutions in the primary structures of Antarctic fish tubulin isotypes and quantitative changes in isoform glutamylation act synergistically to adapt microtubule assembly to low temperatures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15379565</pmid><doi>10.1021/bi049070z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2004-09, Vol.43 (38), p.12265-12274
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_66892979
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Aging - physiology
Amino Acid Sequence
Animals
Animals, Newborn
Antarctic Regions
Brain - metabolism
Chromatography, High Pressure Liquid
Cold Temperature
DNA, Complementary - genetics
Glutamine - metabolism
Microtubules - chemistry
Microtubules - metabolism
Molecular Sequence Data
Notothenia coriiceps
Perciformes - genetics
Protein Isoforms - chemistry
Protein Isoforms - metabolism
Protein Processing, Post-Translational
Proteomics
Rats
Sequence Alignment
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Tubulin - chemistry
Tubulin - metabolism
title Posttranslational Modification of Brain Tubulins from the Antarctic Fish Notothenia coriiceps:  Reduced C-Terminal Glutamylation Correlates with Efficient Microtubule Assembly at Low Temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posttranslational%20Modification%20of%20Brain%20Tubulins%20from%20the%20Antarctic%20Fish%20Notothenia%20coriiceps:%E2%80%89%20Reduced%20C-Terminal%20Glutamylation%20Correlates%20with%20Efficient%20Microtubule%20Assembly%20at%20Low%20Temperature&rft.jtitle=Biochemistry%20(Easton)&rft.au=Redeker,%20Virginie&rft.date=2004-09-28&rft.volume=43&rft.issue=38&rft.spage=12265&rft.epage=12274&rft.pages=12265-12274&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi049070z&rft_dat=%3Cproquest_cross%3E17319999%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a295t-135c2b8ccdeed30164994d55fe998486e04cbf59933c00c669bb96cfb84aa4ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17319999&rft_id=info:pmid/15379565&rfr_iscdi=true