Loading…

Star-Shaped Cationic Polymers by Atom Transfer Radical Polymerization from β-Cyclodextrin Cores for Nonviral Gene Delivery

Cationic polymers with low cytotoxicity and high transfection efficiency have attracted considerable attention as nonviral carriers for gene delivery. Herein, well-defined and star-shaped CDPD consisting of β-CD cores and P(DMAEMA) arms, and CDPDPE consisting of CDPD and P(PEGEEMA) end blocks (where...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2009-02, Vol.10 (2), p.285-293
Main Authors: Xu, F. J, Zhang, Z. X, Ping, Y, Li, J, Kang, E. T, Neoh, K. G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cationic polymers with low cytotoxicity and high transfection efficiency have attracted considerable attention as nonviral carriers for gene delivery. Herein, well-defined and star-shaped CDPD consisting of β-CD cores and P(DMAEMA) arms, and CDPDPE consisting of CDPD and P(PEGEEMA) end blocks (where CD = cyclodextrin, P(DMAEMA) = poly(2-(dimethylamino)ethyl methacrylate), P(PEGEEMA) = poly(poly(ethylene glycol)ethyl ether methacrylate)) for gene delivery were prepared via atom transfer radical polymerization (ATRP) from the bromoisobutyryl-terminated β-CD core. The CDPD and CDPDPE exhibit good ability to condense plasmid DNA (pDNA) into 100−200 nm size nanoparticles with positive zeta potentials of 25−40 mV at nitrogen/phosphate (N/P) ratios of 10 or higher. CDPD and CDPDPE exhibit much lower cytotoxicity and higher gene transfection efficiency than high molecular weight P(DMAEMA) homopolymers. A comparison of the transfection efficiencies between CDPD and P(DMAEMA) homopolymer indicates that the unique star-shaped architecture involving the CD core can enhance the gene transfection efficiency. In addition to reducing cytotoxicity, the introduction of a biocompatible P(PEGEEMA) end block to the P(DMAEMA) arms in CDPDPE can further enhance the gene transfection efficiency.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm8010165