Loading…
Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA
Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysi...
Saved in:
Published in: | Magnetic resonance imaging 2009-02, Vol.27 (2), p.264-278 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843 |
---|---|
cites | cdi_FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843 |
container_end_page | 278 |
container_issue | 2 |
container_start_page | 264 |
container_title | Magnetic resonance imaging |
container_volume | 27 |
creator | Zhang, Jing Anderson, Jon R Liang, Lichen Pulapura, Sujit K Gatewood, Lael Rottenberg, David A Strother, Stephen C |
description | Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies. |
doi_str_mv | 10.1016/j.mri.2008.05.021 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66904169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0730725X08001811</els_id><sourcerecordid>66904169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843</originalsourceid><addsrcrecordid>eNp9kVuL1EAQhRtR3HH1B_giefItsfqW7iAIw7C6A-uFXRXfmk6n4nbMzXQysv767TgDgg8-FAXFOYeqrwh5TiGjQPNXTdZNPmMAOgOZAaMPyIZqxVOpC_GQbEBxSBWT387IkxAaAJCMy8fkjGotCsrphtxeHGy72NkPfWL7KhnG2Xf-93Ew1En9_nqfBN9_bzENS9mgm5NxGhyGdZiMfsTW9xiSX36-TT582u6vb_4EBXRDX6UtHrBNdl-3T8mj2rYBn536Ofny9uLz7jK9-vhuv9tepU5IMadMqVKBKqtYTFW5qB3XkmFRUistl9w6XopS505xrlhVKmrrStS1sJo5Lfg5eXnMjVv-XDDMpvPBYdvaHoclmDwvQNC8iEJ6FLppCGHC2oyT7-x0ZyiYFa9pTMRrVrwGpIl4o-fFKXwpO6z-Ok48o-D1UYDxxIPHyQTnsXdY-SmiM9Xg_xv_5h-3i3C9s-0PvMPQDMvUR3aGmsAMmJv1v-t7QQNQTSm_B4nRoGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66904169</pqid></control><display><type>article</type><title>Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA</title><source>ScienceDirect Journals</source><creator>Zhang, Jing ; Anderson, Jon R ; Liang, Lichen ; Pulapura, Sujit K ; Gatewood, Lael ; Rottenberg, David A ; Strother, Stephen C</creator><creatorcontrib>Zhang, Jing ; Anderson, Jon R ; Liang, Lichen ; Pulapura, Sujit K ; Gatewood, Lael ; Rottenberg, David A ; Strother, Stephen C</creatorcontrib><description>Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2008.05.021</identifier><identifier>PMID: 18849131</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Brain Mapping - methods ; CVA ; fMRI ; fMRI processing pipeline ; GLM ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics & numerical data ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics & numerical data ; Models, Statistical ; Pipeline evaluation ; Programming Languages ; Radiology ; Reproducibility of Results ; Software</subject><ispartof>Magnetic resonance imaging, 2009-02, Vol.27 (2), p.264-278</ispartof><rights>Elsevier Inc.</rights><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843</citedby><cites>FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18849131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Anderson, Jon R</creatorcontrib><creatorcontrib>Liang, Lichen</creatorcontrib><creatorcontrib>Pulapura, Sujit K</creatorcontrib><creatorcontrib>Gatewood, Lael</creatorcontrib><creatorcontrib>Rottenberg, David A</creatorcontrib><creatorcontrib>Strother, Stephen C</creatorcontrib><title>Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.</description><subject>Brain Mapping - methods</subject><subject>CVA</subject><subject>fMRI</subject><subject>fMRI processing pipeline</subject><subject>GLM</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Models, Statistical</subject><subject>Pipeline evaluation</subject><subject>Programming Languages</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Software</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kVuL1EAQhRtR3HH1B_giefItsfqW7iAIw7C6A-uFXRXfmk6n4nbMzXQysv767TgDgg8-FAXFOYeqrwh5TiGjQPNXTdZNPmMAOgOZAaMPyIZqxVOpC_GQbEBxSBWT387IkxAaAJCMy8fkjGotCsrphtxeHGy72NkPfWL7KhnG2Xf-93Ew1En9_nqfBN9_bzENS9mgm5NxGhyGdZiMfsTW9xiSX36-TT582u6vb_4EBXRDX6UtHrBNdl-3T8mj2rYBn536Ofny9uLz7jK9-vhuv9tepU5IMadMqVKBKqtYTFW5qB3XkmFRUistl9w6XopS505xrlhVKmrrStS1sJo5Lfg5eXnMjVv-XDDMpvPBYdvaHoclmDwvQNC8iEJ6FLppCGHC2oyT7-x0ZyiYFa9pTMRrVrwGpIl4o-fFKXwpO6z-Ok48o-D1UYDxxIPHyQTnsXdY-SmiM9Xg_xv_5h-3i3C9s-0PvMPQDMvUR3aGmsAMmJv1v-t7QQNQTSm_B4nRoGw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Zhang, Jing</creator><creator>Anderson, Jon R</creator><creator>Liang, Lichen</creator><creator>Pulapura, Sujit K</creator><creator>Gatewood, Lael</creator><creator>Rottenberg, David A</creator><creator>Strother, Stephen C</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA</title><author>Zhang, Jing ; Anderson, Jon R ; Liang, Lichen ; Pulapura, Sujit K ; Gatewood, Lael ; Rottenberg, David A ; Strother, Stephen C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Brain Mapping - methods</topic><topic>CVA</topic><topic>fMRI</topic><topic>fMRI processing pipeline</topic><topic>GLM</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Models, Statistical</topic><topic>Pipeline evaluation</topic><topic>Programming Languages</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Anderson, Jon R</creatorcontrib><creatorcontrib>Liang, Lichen</creatorcontrib><creatorcontrib>Pulapura, Sujit K</creatorcontrib><creatorcontrib>Gatewood, Lael</creatorcontrib><creatorcontrib>Rottenberg, David A</creatorcontrib><creatorcontrib>Strother, Stephen C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Anderson, Jon R</au><au>Liang, Lichen</au><au>Pulapura, Sujit K</au><au>Gatewood, Lael</au><au>Rottenberg, David A</au><au>Strother, Stephen C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>27</volume><issue>2</issue><spage>264</spage><epage>278</epage><pages>264-278</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>18849131</pmid><doi>10.1016/j.mri.2008.05.021</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-725X |
ispartof | Magnetic resonance imaging, 2009-02, Vol.27 (2), p.264-278 |
issn | 0730-725X 1873-5894 |
language | eng |
recordid | cdi_proquest_miscellaneous_66904169 |
source | ScienceDirect Journals |
subjects | Brain Mapping - methods CVA fMRI fMRI processing pipeline GLM Humans Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - statistics & numerical data Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - statistics & numerical data Models, Statistical Pipeline evaluation Programming Languages Radiology Reproducibility of Results Software |
title | Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20and%20optimization%20of%20fMRI%20single-subject%20processing%20pipelines%20with%20NPAIRS%20and%20second-level%20CVA&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Zhang,%20Jing&rft.date=2009-02-01&rft.volume=27&rft.issue=2&rft.spage=264&rft.epage=278&rft.pages=264-278&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2008.05.021&rft_dat=%3Cproquest_cross%3E66904169%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66904169&rft_id=info:pmid/18849131&rfr_iscdi=true |