Loading…

Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA

Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysi...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance imaging 2009-02, Vol.27 (2), p.264-278
Main Authors: Zhang, Jing, Anderson, Jon R, Liang, Lichen, Pulapura, Sujit K, Gatewood, Lael, Rottenberg, David A, Strother, Stephen C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843
cites cdi_FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843
container_end_page 278
container_issue 2
container_start_page 264
container_title Magnetic resonance imaging
container_volume 27
creator Zhang, Jing
Anderson, Jon R
Liang, Lichen
Pulapura, Sujit K
Gatewood, Lael
Rottenberg, David A
Strother, Stephen C
description Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.
doi_str_mv 10.1016/j.mri.2008.05.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66904169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0730725X08001811</els_id><sourcerecordid>66904169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843</originalsourceid><addsrcrecordid>eNp9kVuL1EAQhRtR3HH1B_giefItsfqW7iAIw7C6A-uFXRXfmk6n4nbMzXQysv767TgDgg8-FAXFOYeqrwh5TiGjQPNXTdZNPmMAOgOZAaMPyIZqxVOpC_GQbEBxSBWT387IkxAaAJCMy8fkjGotCsrphtxeHGy72NkPfWL7KhnG2Xf-93Ew1En9_nqfBN9_bzENS9mgm5NxGhyGdZiMfsTW9xiSX36-TT582u6vb_4EBXRDX6UtHrBNdl-3T8mj2rYBn536Ofny9uLz7jK9-vhuv9tepU5IMadMqVKBKqtYTFW5qB3XkmFRUistl9w6XopS505xrlhVKmrrStS1sJo5Lfg5eXnMjVv-XDDMpvPBYdvaHoclmDwvQNC8iEJ6FLppCGHC2oyT7-x0ZyiYFa9pTMRrVrwGpIl4o-fFKXwpO6z-Ok48o-D1UYDxxIPHyQTnsXdY-SmiM9Xg_xv_5h-3i3C9s-0PvMPQDMvUR3aGmsAMmJv1v-t7QQNQTSm_B4nRoGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66904169</pqid></control><display><type>article</type><title>Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA</title><source>ScienceDirect Journals</source><creator>Zhang, Jing ; Anderson, Jon R ; Liang, Lichen ; Pulapura, Sujit K ; Gatewood, Lael ; Rottenberg, David A ; Strother, Stephen C</creator><creatorcontrib>Zhang, Jing ; Anderson, Jon R ; Liang, Lichen ; Pulapura, Sujit K ; Gatewood, Lael ; Rottenberg, David A ; Strother, Stephen C</creatorcontrib><description>Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2008.05.021</identifier><identifier>PMID: 18849131</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Brain Mapping - methods ; CVA ; fMRI ; fMRI processing pipeline ; GLM ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Models, Statistical ; Pipeline evaluation ; Programming Languages ; Radiology ; Reproducibility of Results ; Software</subject><ispartof>Magnetic resonance imaging, 2009-02, Vol.27 (2), p.264-278</ispartof><rights>Elsevier Inc.</rights><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843</citedby><cites>FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18849131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Anderson, Jon R</creatorcontrib><creatorcontrib>Liang, Lichen</creatorcontrib><creatorcontrib>Pulapura, Sujit K</creatorcontrib><creatorcontrib>Gatewood, Lael</creatorcontrib><creatorcontrib>Rottenberg, David A</creatorcontrib><creatorcontrib>Strother, Stephen C</creatorcontrib><title>Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.</description><subject>Brain Mapping - methods</subject><subject>CVA</subject><subject>fMRI</subject><subject>fMRI processing pipeline</subject><subject>GLM</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Models, Statistical</subject><subject>Pipeline evaluation</subject><subject>Programming Languages</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Software</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kVuL1EAQhRtR3HH1B_giefItsfqW7iAIw7C6A-uFXRXfmk6n4nbMzXQysv767TgDgg8-FAXFOYeqrwh5TiGjQPNXTdZNPmMAOgOZAaMPyIZqxVOpC_GQbEBxSBWT387IkxAaAJCMy8fkjGotCsrphtxeHGy72NkPfWL7KhnG2Xf-93Ew1En9_nqfBN9_bzENS9mgm5NxGhyGdZiMfsTW9xiSX36-TT582u6vb_4EBXRDX6UtHrBNdl-3T8mj2rYBn536Ofny9uLz7jK9-vhuv9tepU5IMadMqVKBKqtYTFW5qB3XkmFRUistl9w6XopS505xrlhVKmrrStS1sJo5Lfg5eXnMjVv-XDDMpvPBYdvaHoclmDwvQNC8iEJ6FLppCGHC2oyT7-x0ZyiYFa9pTMRrVrwGpIl4o-fFKXwpO6z-Ok48o-D1UYDxxIPHyQTnsXdY-SmiM9Xg_xv_5h-3i3C9s-0PvMPQDMvUR3aGmsAMmJv1v-t7QQNQTSm_B4nRoGw</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Zhang, Jing</creator><creator>Anderson, Jon R</creator><creator>Liang, Lichen</creator><creator>Pulapura, Sujit K</creator><creator>Gatewood, Lael</creator><creator>Rottenberg, David A</creator><creator>Strother, Stephen C</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090201</creationdate><title>Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA</title><author>Zhang, Jing ; Anderson, Jon R ; Liang, Lichen ; Pulapura, Sujit K ; Gatewood, Lael ; Rottenberg, David A ; Strother, Stephen C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Brain Mapping - methods</topic><topic>CVA</topic><topic>fMRI</topic><topic>fMRI processing pipeline</topic><topic>GLM</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Models, Statistical</topic><topic>Pipeline evaluation</topic><topic>Programming Languages</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Anderson, Jon R</creatorcontrib><creatorcontrib>Liang, Lichen</creatorcontrib><creatorcontrib>Pulapura, Sujit K</creatorcontrib><creatorcontrib>Gatewood, Lael</creatorcontrib><creatorcontrib>Rottenberg, David A</creatorcontrib><creatorcontrib>Strother, Stephen C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Anderson, Jon R</au><au>Liang, Lichen</au><au>Pulapura, Sujit K</au><au>Gatewood, Lael</au><au>Rottenberg, David A</au><au>Strother, Stephen C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>27</volume><issue>2</issue><spage>264</spage><epage>278</epage><pages>264-278</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>18849131</pmid><doi>10.1016/j.mri.2008.05.021</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2009-02, Vol.27 (2), p.264-278
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_66904169
source ScienceDirect Journals
subjects Brain Mapping - methods
CVA
fMRI
fMRI processing pipeline
GLM
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Models, Statistical
Pipeline evaluation
Programming Languages
Radiology
Reproducibility of Results
Software
title Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20and%20optimization%20of%20fMRI%20single-subject%20processing%20pipelines%20with%20NPAIRS%20and%20second-level%20CVA&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Zhang,%20Jing&rft.date=2009-02-01&rft.volume=27&rft.issue=2&rft.spage=264&rft.epage=278&rft.pages=264-278&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2008.05.021&rft_dat=%3Cproquest_cross%3E66904169%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-277b707bd07b27d64fc3852e9b1a5a353ac3b4b86c73372db71afd4ff4a82c843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66904169&rft_id=info:pmid/18849131&rfr_iscdi=true