Loading…
Platelet glycoprotein VI: its structure and function
Glycoprotein (GP) VI is a platelet membrane protein with a molecular weight of 62 kDa that was identified as a physiological collagen receptor from studies of patients deficient in this protein. GPVI-deficient platelets lacked specifically collagen-induced aggregation and the ability to form thrombi...
Saved in:
Published in: | Thrombosis research 2004, Vol.114 (4), p.221-233 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycoprotein (GP) VI is a platelet membrane protein with a molecular weight of 62 kDa that was identified as a physiological collagen receptor from studies of patients deficient in this protein. GPVI-deficient platelets lacked specifically collagen-induced aggregation and the ability to form thrombi on a collagen surface under flow conditions, suggesting that GPVI makes an indispensable contribution to collagen-induced platelet activation. On the platelet surface, GPVI is present as a complex with the Fc receptor (FcR) γ-chain, probably composed of two GPVI molecules and one FcR γ-chain dimer. GPVI must form such a dimeric complex to exhibit high affinity binding to collagen. The GPVI-induced activation mechanism is initiated by tyrosine phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of the FcR γ-chain, and then this signal is transduced to many related proteins, mainly by tyrosine phosphorylation. GPVI is widely recognized as a requisite factor for the formation of platelet aggregates on a collagen surface under blood flow. However, individuals with GPVI-deficient or null platelets do not exhibit any strong bleeding tendency. Analyzing this apparent dichotomy should provide us with a more precise understanding of the mechanism of thrombus formation. |
---|---|
ISSN: | 0049-3848 1879-2472 |
DOI: | 10.1016/j.thromres.2004.06.046 |