Loading…

Tissue-specific expression of FoxD reporter constructs in amphioxus embryos

Cephalochordates (amphioxus), the closest living invertebrate relatives of the vertebrates, are key to understanding the evolution of developmental mechanisms during the invertebrate-to-vertebrate transition. However, a major impediment to amphioxus as a model organism for developmental biology has...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 2004-10, Vol.274 (2), p.452-461
Main Authors: Yu, Jr-Kai, Holland, Nicholas D., Holland, Linda Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cephalochordates (amphioxus), the closest living invertebrate relatives of the vertebrates, are key to understanding the evolution of developmental mechanisms during the invertebrate-to-vertebrate transition. However, a major impediment to amphioxus as a model organism for developmental biology has been the inability to introduce transgenes or other macromolecules into the embryos. Here, we report the development of a reproducible method for microinjection of amphioxus eggs. Specifically, we show that expression of a LacZ reporter construct including 6.3 kb of AmphiFoxD upstream regulatory DNA recapitulates expression of the endogenous gene in the nerve cord, somites, and notochord. We have also identified the 1.6 kb at the 5′ end of this region as essential for expression in the first two of these domains and the 4.7 kb at the 3′ end as sufficient for expression in the notochord. This study, which is the first report of a method for introduction of large molecules such as DNA into amphioxus embryos, opens the way for studies of gene regulation and function in amphioxus and for comparative studies with vertebrates to understand the relationship between the extensive gene duplications that occurred within the vertebrate lineage and the evolution of vertebrate innovations such as neural crest.
ISSN:0012-1606
1095-564X
DOI:10.1016/j.ydbio.2004.07.010