Loading…

Cell-Free Synthesis of a Functional Ion Channel in the Absence of a Membrane and in the Presence of Detergent

We have investigated the possibility of cell-fee synthesis of membrane proteins in the absence of a membrane and in the presence of detergent. We used the bacterial mechanosensitive channel MscL, a homopentamer, as a model protein. A wide range of nonionic or zwitterionic detergents, Triton X-100, T...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2004-10, Vol.43 (39), p.12585-12591
Main Authors: Berrier, Catherine, Park, Kyu-Ho, Abes, Saïd, Bibonne, Anne, Betton, Jean-Michel, Ghazi, Alexandre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have investigated the possibility of cell-fee synthesis of membrane proteins in the absence of a membrane and in the presence of detergent. We used the bacterial mechanosensitive channel MscL, a homopentamer, as a model protein. A wide range of nonionic or zwitterionic detergents, Triton X-100, Tween 20, Brij 58p, n-dodecyl β-d-maltoside, and CHAPS, were compatible with cell-free synthesis, while n-octyl β-d-glucoside and deoxycholate had an inhibitory effect. In vitro synthesis in the presence of Triton X-100 yielded milligram amounts of MscL per milliliter of lysate. Cross-linking experiments showed that the protein was able to oligomerize in detergents. When the purified protein was reconstituted in liposomes and studied by the patch-clamp technique, its activity at the single-molecule level was similar to that of the recombinant protein produced in Escherichia coli. Cell-free synthesis of membrane proteins should prove a valuable tool for the production of membrane proteins whose overexpression in heterologous systems is difficult.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi049049y