Loading…

Tuning and comparing spatial normalization methods

Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Mor...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis 2004-09, Vol.8 (3), p.311-323
Main Authors: Robbins, Steven, Evans, Alan C., Collins, D.Louis, Whitesides, Sue
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903
cites
container_end_page 323
container_issue 3
container_start_page 311
container_title Medical image analysis
container_volume 8
creator Robbins, Steven
Evans, Alan C.
Collins, D.Louis
Whitesides, Sue
description Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces.
doi_str_mv 10.1016/j.media.2004.06.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66919488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841504000325</els_id><sourcerecordid>66919488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rr6CwTpyVvrJM1Hc_Agi1-w4GU9hzRNNEu_TFpBf71dd9GbnmaGeeYdeBA6x5BhwPxqkzW28jojADQDngHIAzTHOcdpQUl--NNjNkMnMW4AQFAKx2iGGWVACJsjsh5b374kuq0S0zW9Dtsp9nrwuk7aLjS69p_T1LVJY4fXroqn6MjpOtqzfV2g57vb9fIhXT3dPy5vVqmhUgyp4wZzQp3B4ExOMckJKZh0JZdcVoRxJ6WwhuTCOq6LUltWikKAENJVpYR8gS53uX3o3kYbB9X4aGxd69Z2Y1ScSyxpUfwLYsGKXEg6gfkONKGLMVin-uAbHT4UBrV1qjbq26naOlXA1eR0urrYx4_ltP292UucgOsdYCcb794GFY23rZmSgjWDqjr_54MvEaSHww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17583794</pqid></control><display><type>article</type><title>Tuning and comparing spatial normalization methods</title><source>ScienceDirect Journals</source><creator>Robbins, Steven ; Evans, Alan C. ; Collins, D.Louis ; Whitesides, Sue</creator><creatorcontrib>Robbins, Steven ; Evans, Alan C. ; Collins, D.Louis ; Whitesides, Sue</creatorcontrib><description>Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2004.06.009</identifier><identifier>PMID: 15450225</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Anatomical variability measure ; Brain - anatomy &amp; histology ; Brain mapping ; Brain Mapping - methods ; Humans ; Image Processing, Computer-Assisted - methods ; Image registration ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Registration performance measure ; Surface registration</subject><ispartof>Medical image analysis, 2004-09, Vol.8 (3), p.311-323</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15450225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robbins, Steven</creatorcontrib><creatorcontrib>Evans, Alan C.</creatorcontrib><creatorcontrib>Collins, D.Louis</creatorcontrib><creatorcontrib>Whitesides, Sue</creatorcontrib><title>Tuning and comparing spatial normalization methods</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces.</description><subject>Algorithms</subject><subject>Anatomical variability measure</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image registration</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Registration performance measure</subject><subject>Surface registration</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMo7rr6CwTpyVvrJM1Hc_Agi1-w4GU9hzRNNEu_TFpBf71dd9GbnmaGeeYdeBA6x5BhwPxqkzW28jojADQDngHIAzTHOcdpQUl--NNjNkMnMW4AQFAKx2iGGWVACJsjsh5b374kuq0S0zW9Dtsp9nrwuk7aLjS69p_T1LVJY4fXroqn6MjpOtqzfV2g57vb9fIhXT3dPy5vVqmhUgyp4wZzQp3B4ExOMckJKZh0JZdcVoRxJ6WwhuTCOq6LUltWikKAENJVpYR8gS53uX3o3kYbB9X4aGxd69Z2Y1ScSyxpUfwLYsGKXEg6gfkONKGLMVin-uAbHT4UBrV1qjbq26naOlXA1eR0urrYx4_ltP292UucgOsdYCcb794GFY23rZmSgjWDqjr_54MvEaSHww</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Robbins, Steven</creator><creator>Evans, Alan C.</creator><creator>Collins, D.Louis</creator><creator>Whitesides, Sue</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>Tuning and comparing spatial normalization methods</title><author>Robbins, Steven ; Evans, Alan C. ; Collins, D.Louis ; Whitesides, Sue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Anatomical variability measure</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image registration</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Registration performance measure</topic><topic>Surface registration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robbins, Steven</creatorcontrib><creatorcontrib>Evans, Alan C.</creatorcontrib><creatorcontrib>Collins, D.Louis</creatorcontrib><creatorcontrib>Whitesides, Sue</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robbins, Steven</au><au>Evans, Alan C.</au><au>Collins, D.Louis</au><au>Whitesides, Sue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning and comparing spatial normalization methods</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>8</volume><issue>3</issue><spage>311</spage><epage>323</epage><pages>311-323</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15450225</pmid><doi>10.1016/j.media.2004.06.009</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2004-09, Vol.8 (3), p.311-323
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_66919488
source ScienceDirect Journals
subjects Algorithms
Anatomical variability measure
Brain - anatomy & histology
Brain mapping
Brain Mapping - methods
Humans
Image Processing, Computer-Assisted - methods
Image registration
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Registration performance measure
Surface registration
title Tuning and comparing spatial normalization methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20and%20comparing%20spatial%20normalization%20methods&rft.jtitle=Medical%20image%20analysis&rft.au=Robbins,%20Steven&rft.date=2004-09-01&rft.volume=8&rft.issue=3&rft.spage=311&rft.epage=323&rft.pages=311-323&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2004.06.009&rft_dat=%3Cproquest_cross%3E66919488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17583794&rft_id=info:pmid/15450225&rfr_iscdi=true