Loading…
Tuning and comparing spatial normalization methods
Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Mor...
Saved in:
Published in: | Medical image analysis 2004-09, Vol.8 (3), p.311-323 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903 |
---|---|
cites | |
container_end_page | 323 |
container_issue | 3 |
container_start_page | 311 |
container_title | Medical image analysis |
container_volume | 8 |
creator | Robbins, Steven Evans, Alan C. Collins, D.Louis Whitesides, Sue |
description | Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces. |
doi_str_mv | 10.1016/j.media.2004.06.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66919488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841504000325</els_id><sourcerecordid>66919488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rr6CwTpyVvrJM1Hc_Agi1-w4GU9hzRNNEu_TFpBf71dd9GbnmaGeeYdeBA6x5BhwPxqkzW28jojADQDngHIAzTHOcdpQUl--NNjNkMnMW4AQFAKx2iGGWVACJsjsh5b374kuq0S0zW9Dtsp9nrwuk7aLjS69p_T1LVJY4fXroqn6MjpOtqzfV2g57vb9fIhXT3dPy5vVqmhUgyp4wZzQp3B4ExOMckJKZh0JZdcVoRxJ6WwhuTCOq6LUltWikKAENJVpYR8gS53uX3o3kYbB9X4aGxd69Z2Y1ScSyxpUfwLYsGKXEg6gfkONKGLMVin-uAbHT4UBrV1qjbq26naOlXA1eR0urrYx4_ltP292UucgOsdYCcb794GFY23rZmSgjWDqjr_54MvEaSHww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17583794</pqid></control><display><type>article</type><title>Tuning and comparing spatial normalization methods</title><source>ScienceDirect Journals</source><creator>Robbins, Steven ; Evans, Alan C. ; Collins, D.Louis ; Whitesides, Sue</creator><creatorcontrib>Robbins, Steven ; Evans, Alan C. ; Collins, D.Louis ; Whitesides, Sue</creatorcontrib><description>Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2004.06.009</identifier><identifier>PMID: 15450225</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Anatomical variability measure ; Brain - anatomy & histology ; Brain mapping ; Brain Mapping - methods ; Humans ; Image Processing, Computer-Assisted - methods ; Image registration ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Registration performance measure ; Surface registration</subject><ispartof>Medical image analysis, 2004-09, Vol.8 (3), p.311-323</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15450225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robbins, Steven</creatorcontrib><creatorcontrib>Evans, Alan C.</creatorcontrib><creatorcontrib>Collins, D.Louis</creatorcontrib><creatorcontrib>Whitesides, Sue</creatorcontrib><title>Tuning and comparing spatial normalization methods</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces.</description><subject>Algorithms</subject><subject>Anatomical variability measure</subject><subject>Brain - anatomy & histology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image registration</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Registration performance measure</subject><subject>Surface registration</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMo7rr6CwTpyVvrJM1Hc_Agi1-w4GU9hzRNNEu_TFpBf71dd9GbnmaGeeYdeBA6x5BhwPxqkzW28jojADQDngHIAzTHOcdpQUl--NNjNkMnMW4AQFAKx2iGGWVACJsjsh5b374kuq0S0zW9Dtsp9nrwuk7aLjS69p_T1LVJY4fXroqn6MjpOtqzfV2g57vb9fIhXT3dPy5vVqmhUgyp4wZzQp3B4ExOMckJKZh0JZdcVoRxJ6WwhuTCOq6LUltWikKAENJVpYR8gS53uX3o3kYbB9X4aGxd69Z2Y1ScSyxpUfwLYsGKXEg6gfkONKGLMVin-uAbHT4UBrV1qjbq26naOlXA1eR0urrYx4_ltP292UucgOsdYCcb794GFY23rZmSgjWDqjr_54MvEaSHww</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Robbins, Steven</creator><creator>Evans, Alan C.</creator><creator>Collins, D.Louis</creator><creator>Whitesides, Sue</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040901</creationdate><title>Tuning and comparing spatial normalization methods</title><author>Robbins, Steven ; Evans, Alan C. ; Collins, D.Louis ; Whitesides, Sue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Anatomical variability measure</topic><topic>Brain - anatomy & histology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image registration</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Registration performance measure</topic><topic>Surface registration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robbins, Steven</creatorcontrib><creatorcontrib>Evans, Alan C.</creatorcontrib><creatorcontrib>Collins, D.Louis</creatorcontrib><creatorcontrib>Whitesides, Sue</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robbins, Steven</au><au>Evans, Alan C.</au><au>Collins, D.Louis</au><au>Whitesides, Sue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning and comparing spatial normalization methods</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>8</volume><issue>3</issue><spage>311</spage><epage>323</epage><pages>311-323</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Spatial normalization is a key process in cross-sectional studies of brain structure and function using MRI, fMRI, PET and other imaging techniques. A wide range of 2D surface and 3D image deformation algorithms have been developed, all of which involve design choices that are subject to debate. Moreover, most have numerical parameters whose value must be specified by the user. This paper proposes a principled method for evaluating design choices and choosing parameter values. This method can also be used to compare competing spatial normalization algorithms. We demonstrate the method through a performance analysis of a nonaffine registration algorithm for 3D images and a registration algorithm for 2D cortical surfaces.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15450225</pmid><doi>10.1016/j.media.2004.06.009</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2004-09, Vol.8 (3), p.311-323 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_66919488 |
source | ScienceDirect Journals |
subjects | Algorithms Anatomical variability measure Brain - anatomy & histology Brain mapping Brain Mapping - methods Humans Image Processing, Computer-Assisted - methods Image registration Imaging, Three-Dimensional Magnetic Resonance Imaging Registration performance measure Surface registration |
title | Tuning and comparing spatial normalization methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20and%20comparing%20spatial%20normalization%20methods&rft.jtitle=Medical%20image%20analysis&rft.au=Robbins,%20Steven&rft.date=2004-09-01&rft.volume=8&rft.issue=3&rft.spage=311&rft.epage=323&rft.pages=311-323&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2004.06.009&rft_dat=%3Cproquest_cross%3E66919488%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-f6c1624fc10fc3412322859fb6969d256f997ec237ef6a8bae5b7870779fdb903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17583794&rft_id=info:pmid/15450225&rfr_iscdi=true |