Loading…
An essential role for stromal interaction molecule 1 in neointima formation following arterial injury
Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (...
Saved in:
Published in: | Cardiovascular research 2009-03, Vol.81 (4), p.660-668 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3 |
container_end_page | 668 |
container_issue | 4 |
container_start_page | 660 |
container_title | Cardiovascular research |
container_volume | 81 |
creator | Guo, Rui-Wei Wang, Hong Gao, Pan Li, Mao-Quan Zeng, Chun-Yu Yu, Yang Chen, Jian-Fei Song, Ming-Bao Shi, Yan-Kun Huang, Lan |
description | Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell proliferation. We hypothesized that knockdown of STIM1 inhibits VSMC proliferation and suppresses neointimal hyperplasia. Methods and results We examined the effect of the knockdown of STIM1 using a rat balloon injury model and cultured rat aortic VSMCs. Interestingly, knockdown of rat STIM1 by adenovirus delivery of small interfering RNA (siRNA) significantly suppressed neointimal hyperplasia in a rat carotid artery balloon injury model at 14 days after injury. The re-expression of human STIM1 to smooth muscle reversed the effect of STIM1 knockdown on neointimal formation. Rat aortic VSMCs were used for the in vitro assays. Knockdown of endogenous STIM1 significantly inhibited proliferation and migration of VSMCs. Moreover, STIM1 knockdown induced cell-cycle arrest in G0/G1 and resulted in a marked decrease in SOC. Replenishment with recombinant human STIM1 reversed the effect of siRNA knockdown. These results suggest STIM1 has a critical role in neointimal formation in a rat model of vascular injury. Conclusion STIM1 may represent a novel therapeutic target in the prevention of restenosis after vascular interventions. |
doi_str_mv | 10.1093/cvr/cvn338 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66928035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvn338</oup_id><sourcerecordid>66928035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3</originalsourceid><addsrcrecordid>eNp90EFP2zAUAGALbYIOuPADply2w6QMO47j-FihbcCQdgBUxMV6cZ-RuyTu7ATWfz-3qeA2yZbl9z4_24-QM0a_Mqr4uXkOafac1wdkxqQQOS9K8Y7MKKV1XvGKH5EPMa7SVghZHpIjpqgoqBQzgvM-wxixHxy0WfAtZtaHLA7Bdyng-gEDmMH5PutS0owJsBTOevQp6TrY-g52wvq29S-uf8ogpHNuV2A1hs0JeW-hjXi6X4_J_fdvdxeX-c2vH1cX85vclLUYcolLidI0prKGVgrQKlpQpZCWcglgoREIvAaUjaykYkoyChxKIxvalNbyY_J5qrsO_s-IcdCdiwbbFtJzx6irShU15SLBLxM0wccY0Op1SH8JG82o3jZVp6bqqakJf9xXHZsOl29038UEPu0BRAOtDdAbF19dwVhRpvHm_Lj-_4X55Fwc8O-rhPBbV5JLoS8fHvVC0Z_XxeJWF_wfvASe3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66928035</pqid></control><display><type>article</type><title>An essential role for stromal interaction molecule 1 in neointima formation following arterial injury</title><source>Oxford Journals Online</source><creator>Guo, Rui-Wei ; Wang, Hong ; Gao, Pan ; Li, Mao-Quan ; Zeng, Chun-Yu ; Yu, Yang ; Chen, Jian-Fei ; Song, Ming-Bao ; Shi, Yan-Kun ; Huang, Lan</creator><creatorcontrib>Guo, Rui-Wei ; Wang, Hong ; Gao, Pan ; Li, Mao-Quan ; Zeng, Chun-Yu ; Yu, Yang ; Chen, Jian-Fei ; Song, Ming-Bao ; Shi, Yan-Kun ; Huang, Lan</creatorcontrib><description>Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell proliferation. We hypothesized that knockdown of STIM1 inhibits VSMC proliferation and suppresses neointimal hyperplasia. Methods and results We examined the effect of the knockdown of STIM1 using a rat balloon injury model and cultured rat aortic VSMCs. Interestingly, knockdown of rat STIM1 by adenovirus delivery of small interfering RNA (siRNA) significantly suppressed neointimal hyperplasia in a rat carotid artery balloon injury model at 14 days after injury. The re-expression of human STIM1 to smooth muscle reversed the effect of STIM1 knockdown on neointimal formation. Rat aortic VSMCs were used for the in vitro assays. Knockdown of endogenous STIM1 significantly inhibited proliferation and migration of VSMCs. Moreover, STIM1 knockdown induced cell-cycle arrest in G0/G1 and resulted in a marked decrease in SOC. Replenishment with recombinant human STIM1 reversed the effect of siRNA knockdown. These results suggest STIM1 has a critical role in neointimal formation in a rat model of vascular injury. Conclusion STIM1 may represent a novel therapeutic target in the prevention of restenosis after vascular interventions.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvn338</identifier><identifier>PMID: 19052075</identifier><identifier>CODEN: CVREAU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Actins - metabolism ; Angioplasty, Balloon - adverse effects ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Cardiology. Vascular system ; Carotid Artery Injuries - etiology ; Carotid Artery Injuries - metabolism ; Carotid Artery Injuries - pathology ; Cell Cycle ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; Disease Models, Animal ; Gene Knockdown Techniques ; Humans ; Hyperplasia ; Male ; Medical sciences ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Muscle, Smooth, Vascular - injuries ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; Neointimal ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Rats ; Rats, Wistar ; Recombinant Proteins - metabolism ; Restenosis ; RNA Interference ; RNA, Messenger - metabolism ; RNA, Small Interfering - metabolism ; STIM1 ; Stromal Interaction Molecule 1 ; Time Factors ; Transduction, Genetic ; Vascular injury ; VSMC proliferation</subject><ispartof>Cardiovascular research, 2009-03, Vol.81 (4), p.660-668</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2008. For permissions please email: journals.permissions@oxfordjournals.org 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3</citedby><cites>FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21124124$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19052075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Rui-Wei</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Li, Mao-Quan</creatorcontrib><creatorcontrib>Zeng, Chun-Yu</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Chen, Jian-Fei</creatorcontrib><creatorcontrib>Song, Ming-Bao</creatorcontrib><creatorcontrib>Shi, Yan-Kun</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><title>An essential role for stromal interaction molecule 1 in neointima formation following arterial injury</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell proliferation. We hypothesized that knockdown of STIM1 inhibits VSMC proliferation and suppresses neointimal hyperplasia. Methods and results We examined the effect of the knockdown of STIM1 using a rat balloon injury model and cultured rat aortic VSMCs. Interestingly, knockdown of rat STIM1 by adenovirus delivery of small interfering RNA (siRNA) significantly suppressed neointimal hyperplasia in a rat carotid artery balloon injury model at 14 days after injury. The re-expression of human STIM1 to smooth muscle reversed the effect of STIM1 knockdown on neointimal formation. Rat aortic VSMCs were used for the in vitro assays. Knockdown of endogenous STIM1 significantly inhibited proliferation and migration of VSMCs. Moreover, STIM1 knockdown induced cell-cycle arrest in G0/G1 and resulted in a marked decrease in SOC. Replenishment with recombinant human STIM1 reversed the effect of siRNA knockdown. These results suggest STIM1 has a critical role in neointimal formation in a rat model of vascular injury. Conclusion STIM1 may represent a novel therapeutic target in the prevention of restenosis after vascular interventions.</description><subject>Actins - metabolism</subject><subject>Angioplasty, Balloon - adverse effects</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Cardiology. Vascular system</subject><subject>Carotid Artery Injuries - etiology</subject><subject>Carotid Artery Injuries - metabolism</subject><subject>Carotid Artery Injuries - pathology</subject><subject>Cell Cycle</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Hyperplasia</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Muscle, Smooth, Vascular - injuries</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>Neointimal</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Recombinant Proteins - metabolism</subject><subject>Restenosis</subject><subject>RNA Interference</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>STIM1</subject><subject>Stromal Interaction Molecule 1</subject><subject>Time Factors</subject><subject>Transduction, Genetic</subject><subject>Vascular injury</subject><subject>VSMC proliferation</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90EFP2zAUAGALbYIOuPADply2w6QMO47j-FihbcCQdgBUxMV6cZ-RuyTu7ATWfz-3qeA2yZbl9z4_24-QM0a_Mqr4uXkOafac1wdkxqQQOS9K8Y7MKKV1XvGKH5EPMa7SVghZHpIjpqgoqBQzgvM-wxixHxy0WfAtZtaHLA7Bdyng-gEDmMH5PutS0owJsBTOevQp6TrY-g52wvq29S-uf8ogpHNuV2A1hs0JeW-hjXi6X4_J_fdvdxeX-c2vH1cX85vclLUYcolLidI0prKGVgrQKlpQpZCWcglgoREIvAaUjaykYkoyChxKIxvalNbyY_J5qrsO_s-IcdCdiwbbFtJzx6irShU15SLBLxM0wccY0Op1SH8JG82o3jZVp6bqqakJf9xXHZsOl29038UEPu0BRAOtDdAbF19dwVhRpvHm_Lj-_4X55Fwc8O-rhPBbV5JLoS8fHvVC0Z_XxeJWF_wfvASe3g</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Guo, Rui-Wei</creator><creator>Wang, Hong</creator><creator>Gao, Pan</creator><creator>Li, Mao-Quan</creator><creator>Zeng, Chun-Yu</creator><creator>Yu, Yang</creator><creator>Chen, Jian-Fei</creator><creator>Song, Ming-Bao</creator><creator>Shi, Yan-Kun</creator><creator>Huang, Lan</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090301</creationdate><title>An essential role for stromal interaction molecule 1 in neointima formation following arterial injury</title><author>Guo, Rui-Wei ; Wang, Hong ; Gao, Pan ; Li, Mao-Quan ; Zeng, Chun-Yu ; Yu, Yang ; Chen, Jian-Fei ; Song, Ming-Bao ; Shi, Yan-Kun ; Huang, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actins - metabolism</topic><topic>Angioplasty, Balloon - adverse effects</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Cardiology. Vascular system</topic><topic>Carotid Artery Injuries - etiology</topic><topic>Carotid Artery Injuries - metabolism</topic><topic>Carotid Artery Injuries - pathology</topic><topic>Cell Cycle</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Hyperplasia</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Muscle, Smooth, Vascular - injuries</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>Neointimal</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Recombinant Proteins - metabolism</topic><topic>Restenosis</topic><topic>RNA Interference</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>STIM1</topic><topic>Stromal Interaction Molecule 1</topic><topic>Time Factors</topic><topic>Transduction, Genetic</topic><topic>Vascular injury</topic><topic>VSMC proliferation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Rui-Wei</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Li, Mao-Quan</creatorcontrib><creatorcontrib>Zeng, Chun-Yu</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Chen, Jian-Fei</creatorcontrib><creatorcontrib>Song, Ming-Bao</creatorcontrib><creatorcontrib>Shi, Yan-Kun</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Rui-Wei</au><au>Wang, Hong</au><au>Gao, Pan</au><au>Li, Mao-Quan</au><au>Zeng, Chun-Yu</au><au>Yu, Yang</au><au>Chen, Jian-Fei</au><au>Song, Ming-Bao</au><au>Shi, Yan-Kun</au><au>Huang, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An essential role for stromal interaction molecule 1 in neointima formation following arterial injury</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>81</volume><issue>4</issue><spage>660</spage><epage>668</epage><pages>660-668</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><coden>CVREAU</coden><abstract>Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell proliferation. We hypothesized that knockdown of STIM1 inhibits VSMC proliferation and suppresses neointimal hyperplasia. Methods and results We examined the effect of the knockdown of STIM1 using a rat balloon injury model and cultured rat aortic VSMCs. Interestingly, knockdown of rat STIM1 by adenovirus delivery of small interfering RNA (siRNA) significantly suppressed neointimal hyperplasia in a rat carotid artery balloon injury model at 14 days after injury. The re-expression of human STIM1 to smooth muscle reversed the effect of STIM1 knockdown on neointimal formation. Rat aortic VSMCs were used for the in vitro assays. Knockdown of endogenous STIM1 significantly inhibited proliferation and migration of VSMCs. Moreover, STIM1 knockdown induced cell-cycle arrest in G0/G1 and resulted in a marked decrease in SOC. Replenishment with recombinant human STIM1 reversed the effect of siRNA knockdown. These results suggest STIM1 has a critical role in neointimal formation in a rat model of vascular injury. Conclusion STIM1 may represent a novel therapeutic target in the prevention of restenosis after vascular interventions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19052075</pmid><doi>10.1093/cvr/cvn338</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6363 |
ispartof | Cardiovascular research, 2009-03, Vol.81 (4), p.660-668 |
issn | 0008-6363 1755-3245 |
language | eng |
recordid | cdi_proquest_miscellaneous_66928035 |
source | Oxford Journals Online |
subjects | Actins - metabolism Angioplasty, Balloon - adverse effects Animals Biological and medical sciences Calcium - metabolism Cardiology. Vascular system Carotid Artery Injuries - etiology Carotid Artery Injuries - metabolism Carotid Artery Injuries - pathology Cell Cycle Cell Movement Cell Proliferation Cells, Cultured Disease Models, Animal Gene Knockdown Techniques Humans Hyperplasia Male Medical sciences Membrane Glycoproteins - genetics Membrane Glycoproteins - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Muscle, Smooth, Vascular - injuries Muscle, Smooth, Vascular - metabolism Muscle, Smooth, Vascular - pathology Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology Neointimal Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Rats Rats, Wistar Recombinant Proteins - metabolism Restenosis RNA Interference RNA, Messenger - metabolism RNA, Small Interfering - metabolism STIM1 Stromal Interaction Molecule 1 Time Factors Transduction, Genetic Vascular injury VSMC proliferation |
title | An essential role for stromal interaction molecule 1 in neointima formation following arterial injury |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20essential%20role%20for%20stromal%20interaction%20molecule%201%20in%20neointima%20formation%20following%20arterial%20injury&rft.jtitle=Cardiovascular%20research&rft.au=Guo,%20Rui-Wei&rft.date=2009-03-01&rft.volume=81&rft.issue=4&rft.spage=660&rft.epage=668&rft.pages=660-668&rft.issn=0008-6363&rft.eissn=1755-3245&rft.coden=CVREAU&rft_id=info:doi/10.1093/cvr/cvn338&rft_dat=%3Cproquest_cross%3E66928035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66928035&rft_id=info:pmid/19052075&rft_oup_id=10.1093/cvr/cvn338&rfr_iscdi=true |