Loading…

An essential role for stromal interaction molecule 1 in neointima formation following arterial injury

Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (...

Full description

Saved in:
Bibliographic Details
Published in:Cardiovascular research 2009-03, Vol.81 (4), p.660-668
Main Authors: Guo, Rui-Wei, Wang, Hong, Gao, Pan, Li, Mao-Quan, Zeng, Chun-Yu, Yu, Yang, Chen, Jian-Fei, Song, Ming-Bao, Shi, Yan-Kun, Huang, Lan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3
cites cdi_FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3
container_end_page 668
container_issue 4
container_start_page 660
container_title Cardiovascular research
container_volume 81
creator Guo, Rui-Wei
Wang, Hong
Gao, Pan
Li, Mao-Quan
Zeng, Chun-Yu
Yu, Yang
Chen, Jian-Fei
Song, Ming-Bao
Shi, Yan-Kun
Huang, Lan
description Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell proliferation. We hypothesized that knockdown of STIM1 inhibits VSMC proliferation and suppresses neointimal hyperplasia. Methods and results We examined the effect of the knockdown of STIM1 using a rat balloon injury model and cultured rat aortic VSMCs. Interestingly, knockdown of rat STIM1 by adenovirus delivery of small interfering RNA (siRNA) significantly suppressed neointimal hyperplasia in a rat carotid artery balloon injury model at 14 days after injury. The re-expression of human STIM1 to smooth muscle reversed the effect of STIM1 knockdown on neointimal formation. Rat aortic VSMCs were used for the in vitro assays. Knockdown of endogenous STIM1 significantly inhibited proliferation and migration of VSMCs. Moreover, STIM1 knockdown induced cell-cycle arrest in G0/G1 and resulted in a marked decrease in SOC. Replenishment with recombinant human STIM1 reversed the effect of siRNA knockdown. These results suggest STIM1 has a critical role in neointimal formation in a rat model of vascular injury. Conclusion STIM1 may represent a novel therapeutic target in the prevention of restenosis after vascular interventions.
doi_str_mv 10.1093/cvr/cvn338
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_66928035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvn338</oup_id><sourcerecordid>66928035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3</originalsourceid><addsrcrecordid>eNp90EFP2zAUAGALbYIOuPADply2w6QMO47j-FihbcCQdgBUxMV6cZ-RuyTu7ATWfz-3qeA2yZbl9z4_24-QM0a_Mqr4uXkOafac1wdkxqQQOS9K8Y7MKKV1XvGKH5EPMa7SVghZHpIjpqgoqBQzgvM-wxixHxy0WfAtZtaHLA7Bdyng-gEDmMH5PutS0owJsBTOevQp6TrY-g52wvq29S-uf8ogpHNuV2A1hs0JeW-hjXi6X4_J_fdvdxeX-c2vH1cX85vclLUYcolLidI0prKGVgrQKlpQpZCWcglgoREIvAaUjaykYkoyChxKIxvalNbyY_J5qrsO_s-IcdCdiwbbFtJzx6irShU15SLBLxM0wccY0Op1SH8JG82o3jZVp6bqqakJf9xXHZsOl29038UEPu0BRAOtDdAbF19dwVhRpvHm_Lj-_4X55Fwc8O-rhPBbV5JLoS8fHvVC0Z_XxeJWF_wfvASe3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66928035</pqid></control><display><type>article</type><title>An essential role for stromal interaction molecule 1 in neointima formation following arterial injury</title><source>Oxford Journals Online</source><creator>Guo, Rui-Wei ; Wang, Hong ; Gao, Pan ; Li, Mao-Quan ; Zeng, Chun-Yu ; Yu, Yang ; Chen, Jian-Fei ; Song, Ming-Bao ; Shi, Yan-Kun ; Huang, Lan</creator><creatorcontrib>Guo, Rui-Wei ; Wang, Hong ; Gao, Pan ; Li, Mao-Quan ; Zeng, Chun-Yu ; Yu, Yang ; Chen, Jian-Fei ; Song, Ming-Bao ; Shi, Yan-Kun ; Huang, Lan</creatorcontrib><description>Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell proliferation. We hypothesized that knockdown of STIM1 inhibits VSMC proliferation and suppresses neointimal hyperplasia. Methods and results We examined the effect of the knockdown of STIM1 using a rat balloon injury model and cultured rat aortic VSMCs. Interestingly, knockdown of rat STIM1 by adenovirus delivery of small interfering RNA (siRNA) significantly suppressed neointimal hyperplasia in a rat carotid artery balloon injury model at 14 days after injury. The re-expression of human STIM1 to smooth muscle reversed the effect of STIM1 knockdown on neointimal formation. Rat aortic VSMCs were used for the in vitro assays. Knockdown of endogenous STIM1 significantly inhibited proliferation and migration of VSMCs. Moreover, STIM1 knockdown induced cell-cycle arrest in G0/G1 and resulted in a marked decrease in SOC. Replenishment with recombinant human STIM1 reversed the effect of siRNA knockdown. These results suggest STIM1 has a critical role in neointimal formation in a rat model of vascular injury. Conclusion STIM1 may represent a novel therapeutic target in the prevention of restenosis after vascular interventions.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvn338</identifier><identifier>PMID: 19052075</identifier><identifier>CODEN: CVREAU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Actins - metabolism ; Angioplasty, Balloon - adverse effects ; Animals ; Biological and medical sciences ; Calcium - metabolism ; Cardiology. Vascular system ; Carotid Artery Injuries - etiology ; Carotid Artery Injuries - metabolism ; Carotid Artery Injuries - pathology ; Cell Cycle ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; Disease Models, Animal ; Gene Knockdown Techniques ; Humans ; Hyperplasia ; Male ; Medical sciences ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Muscle, Smooth, Vascular - injuries ; Muscle, Smooth, Vascular - metabolism ; Muscle, Smooth, Vascular - pathology ; Myocytes, Smooth Muscle - metabolism ; Myocytes, Smooth Muscle - pathology ; Neointimal ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Rats ; Rats, Wistar ; Recombinant Proteins - metabolism ; Restenosis ; RNA Interference ; RNA, Messenger - metabolism ; RNA, Small Interfering - metabolism ; STIM1 ; Stromal Interaction Molecule 1 ; Time Factors ; Transduction, Genetic ; Vascular injury ; VSMC proliferation</subject><ispartof>Cardiovascular research, 2009-03, Vol.81 (4), p.660-668</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2008. For permissions please email: journals.permissions@oxfordjournals.org 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3</citedby><cites>FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21124124$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19052075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Rui-Wei</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Li, Mao-Quan</creatorcontrib><creatorcontrib>Zeng, Chun-Yu</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Chen, Jian-Fei</creatorcontrib><creatorcontrib>Song, Ming-Bao</creatorcontrib><creatorcontrib>Shi, Yan-Kun</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><title>An essential role for stromal interaction molecule 1 in neointima formation following arterial injury</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell proliferation. We hypothesized that knockdown of STIM1 inhibits VSMC proliferation and suppresses neointimal hyperplasia. Methods and results We examined the effect of the knockdown of STIM1 using a rat balloon injury model and cultured rat aortic VSMCs. Interestingly, knockdown of rat STIM1 by adenovirus delivery of small interfering RNA (siRNA) significantly suppressed neointimal hyperplasia in a rat carotid artery balloon injury model at 14 days after injury. The re-expression of human STIM1 to smooth muscle reversed the effect of STIM1 knockdown on neointimal formation. Rat aortic VSMCs were used for the in vitro assays. Knockdown of endogenous STIM1 significantly inhibited proliferation and migration of VSMCs. Moreover, STIM1 knockdown induced cell-cycle arrest in G0/G1 and resulted in a marked decrease in SOC. Replenishment with recombinant human STIM1 reversed the effect of siRNA knockdown. These results suggest STIM1 has a critical role in neointimal formation in a rat model of vascular injury. Conclusion STIM1 may represent a novel therapeutic target in the prevention of restenosis after vascular interventions.</description><subject>Actins - metabolism</subject><subject>Angioplasty, Balloon - adverse effects</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>Cardiology. Vascular system</subject><subject>Carotid Artery Injuries - etiology</subject><subject>Carotid Artery Injuries - metabolism</subject><subject>Carotid Artery Injuries - pathology</subject><subject>Cell Cycle</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Hyperplasia</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Muscle, Smooth, Vascular - injuries</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Myocytes, Smooth Muscle - pathology</subject><subject>Neointimal</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Recombinant Proteins - metabolism</subject><subject>Restenosis</subject><subject>RNA Interference</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Small Interfering - metabolism</subject><subject>STIM1</subject><subject>Stromal Interaction Molecule 1</subject><subject>Time Factors</subject><subject>Transduction, Genetic</subject><subject>Vascular injury</subject><subject>VSMC proliferation</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90EFP2zAUAGALbYIOuPADply2w6QMO47j-FihbcCQdgBUxMV6cZ-RuyTu7ATWfz-3qeA2yZbl9z4_24-QM0a_Mqr4uXkOafac1wdkxqQQOS9K8Y7MKKV1XvGKH5EPMa7SVghZHpIjpqgoqBQzgvM-wxixHxy0WfAtZtaHLA7Bdyng-gEDmMH5PutS0owJsBTOevQp6TrY-g52wvq29S-uf8ogpHNuV2A1hs0JeW-hjXi6X4_J_fdvdxeX-c2vH1cX85vclLUYcolLidI0prKGVgrQKlpQpZCWcglgoREIvAaUjaykYkoyChxKIxvalNbyY_J5qrsO_s-IcdCdiwbbFtJzx6irShU15SLBLxM0wccY0Op1SH8JG82o3jZVp6bqqakJf9xXHZsOl29038UEPu0BRAOtDdAbF19dwVhRpvHm_Lj-_4X55Fwc8O-rhPBbV5JLoS8fHvVC0Z_XxeJWF_wfvASe3g</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Guo, Rui-Wei</creator><creator>Wang, Hong</creator><creator>Gao, Pan</creator><creator>Li, Mao-Quan</creator><creator>Zeng, Chun-Yu</creator><creator>Yu, Yang</creator><creator>Chen, Jian-Fei</creator><creator>Song, Ming-Bao</creator><creator>Shi, Yan-Kun</creator><creator>Huang, Lan</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090301</creationdate><title>An essential role for stromal interaction molecule 1 in neointima formation following arterial injury</title><author>Guo, Rui-Wei ; Wang, Hong ; Gao, Pan ; Li, Mao-Quan ; Zeng, Chun-Yu ; Yu, Yang ; Chen, Jian-Fei ; Song, Ming-Bao ; Shi, Yan-Kun ; Huang, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actins - metabolism</topic><topic>Angioplasty, Balloon - adverse effects</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>Cardiology. Vascular system</topic><topic>Carotid Artery Injuries - etiology</topic><topic>Carotid Artery Injuries - metabolism</topic><topic>Carotid Artery Injuries - pathology</topic><topic>Cell Cycle</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Hyperplasia</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Muscle, Smooth, Vascular - injuries</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Myocytes, Smooth Muscle - pathology</topic><topic>Neointimal</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Recombinant Proteins - metabolism</topic><topic>Restenosis</topic><topic>RNA Interference</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Small Interfering - metabolism</topic><topic>STIM1</topic><topic>Stromal Interaction Molecule 1</topic><topic>Time Factors</topic><topic>Transduction, Genetic</topic><topic>Vascular injury</topic><topic>VSMC proliferation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Rui-Wei</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Gao, Pan</creatorcontrib><creatorcontrib>Li, Mao-Quan</creatorcontrib><creatorcontrib>Zeng, Chun-Yu</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><creatorcontrib>Chen, Jian-Fei</creatorcontrib><creatorcontrib>Song, Ming-Bao</creatorcontrib><creatorcontrib>Shi, Yan-Kun</creatorcontrib><creatorcontrib>Huang, Lan</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Rui-Wei</au><au>Wang, Hong</au><au>Gao, Pan</au><au>Li, Mao-Quan</au><au>Zeng, Chun-Yu</au><au>Yu, Yang</au><au>Chen, Jian-Fei</au><au>Song, Ming-Bao</au><au>Shi, Yan-Kun</au><au>Huang, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An essential role for stromal interaction molecule 1 in neointima formation following arterial injury</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>81</volume><issue>4</issue><spage>660</spage><epage>668</epage><pages>660-668</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><coden>CVREAU</coden><abstract>Aims There is evidence to suggest that stromal interaction molecule 1 (STIM1) functions as a Ca2+ sensor on the endoplasmic reticulum, leading to transduction of signals to the plasma membrane and opening of store-operated Ca2+ channels (SOC). SOC have been detected in vascular smooth muscle cells (VSMCs) and are thought to have an essential role in the regulation of contraction and cell proliferation. We hypothesized that knockdown of STIM1 inhibits VSMC proliferation and suppresses neointimal hyperplasia. Methods and results We examined the effect of the knockdown of STIM1 using a rat balloon injury model and cultured rat aortic VSMCs. Interestingly, knockdown of rat STIM1 by adenovirus delivery of small interfering RNA (siRNA) significantly suppressed neointimal hyperplasia in a rat carotid artery balloon injury model at 14 days after injury. The re-expression of human STIM1 to smooth muscle reversed the effect of STIM1 knockdown on neointimal formation. Rat aortic VSMCs were used for the in vitro assays. Knockdown of endogenous STIM1 significantly inhibited proliferation and migration of VSMCs. Moreover, STIM1 knockdown induced cell-cycle arrest in G0/G1 and resulted in a marked decrease in SOC. Replenishment with recombinant human STIM1 reversed the effect of siRNA knockdown. These results suggest STIM1 has a critical role in neointimal formation in a rat model of vascular injury. Conclusion STIM1 may represent a novel therapeutic target in the prevention of restenosis after vascular interventions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19052075</pmid><doi>10.1093/cvr/cvn338</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6363
ispartof Cardiovascular research, 2009-03, Vol.81 (4), p.660-668
issn 0008-6363
1755-3245
language eng
recordid cdi_proquest_miscellaneous_66928035
source Oxford Journals Online
subjects Actins - metabolism
Angioplasty, Balloon - adverse effects
Animals
Biological and medical sciences
Calcium - metabolism
Cardiology. Vascular system
Carotid Artery Injuries - etiology
Carotid Artery Injuries - metabolism
Carotid Artery Injuries - pathology
Cell Cycle
Cell Movement
Cell Proliferation
Cells, Cultured
Disease Models, Animal
Gene Knockdown Techniques
Humans
Hyperplasia
Male
Medical sciences
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Membrane Proteins - genetics
Membrane Proteins - metabolism
Muscle, Smooth, Vascular - injuries
Muscle, Smooth, Vascular - metabolism
Muscle, Smooth, Vascular - pathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
Neointimal
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Rats
Rats, Wistar
Recombinant Proteins - metabolism
Restenosis
RNA Interference
RNA, Messenger - metabolism
RNA, Small Interfering - metabolism
STIM1
Stromal Interaction Molecule 1
Time Factors
Transduction, Genetic
Vascular injury
VSMC proliferation
title An essential role for stromal interaction molecule 1 in neointima formation following arterial injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20essential%20role%20for%20stromal%20interaction%20molecule%201%20in%20neointima%20formation%20following%20arterial%20injury&rft.jtitle=Cardiovascular%20research&rft.au=Guo,%20Rui-Wei&rft.date=2009-03-01&rft.volume=81&rft.issue=4&rft.spage=660&rft.epage=668&rft.pages=660-668&rft.issn=0008-6363&rft.eissn=1755-3245&rft.coden=CVREAU&rft_id=info:doi/10.1093/cvr/cvn338&rft_dat=%3Cproquest_cross%3E66928035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-7ed7e7cbc6fc069aef902099e047daafab5ea38ae7b767919710a3a4c7b0b4ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66928035&rft_id=info:pmid/19052075&rft_oup_id=10.1093/cvr/cvn338&rfr_iscdi=true