Loading…
Phosphatidylglycerol depletion induces an increase in myxoxanthophyll biosynthetic activity in Synechocystis PCC6803 cells
Phosphatidylglycerol (PG) depletion suppressed the oxygen-evolving activity of Synechocystis PCC6803 pgsA mutant cells. Shortage of PG led to decreased photosynthetic activity, which, similar to the effect of high light exposure, is likely to generate the production of reactive oxygen species (ROS)...
Saved in:
Published in: | Plant and cell physiology 2009-02, Vol.50 (2), p.374-382 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phosphatidylglycerol (PG) depletion suppressed the oxygen-evolving activity of Synechocystis PCC6803 pgsA mutant cells. Shortage of PG led to decreased photosynthetic activity, which, similar to the effect of high light exposure, is likely to generate the production of reactive oxygen species (ROS) or free radicals. Protection of the PG-depleted cells against light-induced damage increased the echinenone and myxoxanthophyll content of the cells. The increased carotenoid content was localized in a soluble fraction of the cells as well as in isolated thylakoid and cytoplasmic membranes. The soluble carotenoid fraction contained carotene derivatives, which may bind to proteins. These carotene-protein complexes are similar to orange carotenoid protein that is involved in yielding protection against free radicals and ROS. An increase in the content of myxoxanthophyll and echinenone upon PG depletion suggests that PG depletion regulates the biosynthetic pathway of specific carotenoids. |
---|---|
ISSN: | 0032-0781 1471-9053 |
DOI: | 10.1093/pcp/pcn204 |