Loading…
Immunolocalization of the uptake hydrogenase in the marine cyanobacterium Lyngbya majuscula CCAP 1446/4 and two Nostoc strains
In N₂-fixing cyanobacteria, the reduction of N₂ to NH₃ is coupled with the production of molecular hydrogen, which is rapidly consumed by an uptake hydrogenase, an enzyme that is present in almost all diazotrophic cyanobacteria. The cellular and subcellular localization of the cyanobacterial uptake...
Saved in:
Published in: | FEMS microbiology letters 2009-03, Vol.292 (1), p.57-62 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In N₂-fixing cyanobacteria, the reduction of N₂ to NH₃ is coupled with the production of molecular hydrogen, which is rapidly consumed by an uptake hydrogenase, an enzyme that is present in almost all diazotrophic cyanobacteria. The cellular and subcellular localization of the cyanobacterial uptake hydrogenase remains uncertain, and it is definitely strain dependent. Previous studies focused mainly on heterocystous cyanobacteria and used heterologous antisera. The present work represents the first effort to establish the subcellular localization of the uptake hydrogenase in a N₂-fixing filamentous nonheterocystous cyanobacterium, Lyngbya majuscula CCAP 1446/4, using the first antiserum produced against a cyanobacterial uptake hydrogenase. The data obtained revealed higher specific labelling associated with the thylakoid membranes of L. majuscula, reinforcing the idea that the cyanobacterial uptake hydrogenase is indeed a membrane-bound protein. For comparative purposes, the localization of the uptake hydrogenase was also investigated in two distinct heterocystous cyanobacterial strains, and while in Nostoc sp. PCC 7120 the labelling was only observed in the heterocysts, in Nostoc punctiforme, the presence of uptake hydrogenase antigens was detected in both the vegetative cells and heterocysts, corresponding most probably to an inactive and an active form of the enzyme. |
---|---|
ISSN: | 0378-1097 1574-6968 |
DOI: | 10.1111/j.1574-6968.2008.01471.x |