Loading…
Hepatic glucagon receptor binding and glucose-lowering in vivo by peptidyl and non-peptidyl glucagon receptor antagonists
Glucagon receptor antagonists have been actively pursued as potential therapeutics for the treatment of type 2 diabetes. Peptidyl and non-peptidyl glucagon receptor antagonists have been shown to block glucagon-induced blood glucose elevation in both animals and humans. How the antagonists and the g...
Saved in:
Published in: | European journal of pharmacology 2004-10, Vol.501 (1), p.225-234 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glucagon receptor antagonists have been actively pursued as potential therapeutics for the treatment of type 2 diabetes. Peptidyl and non-peptidyl glucagon receptor antagonists have been shown to block glucagon-induced blood glucose elevation in both animals and humans. How the antagonists and the glucagon receptor interact in vivo has not been reported and is the subject of the current study. Using
125I-labeled glucagon as a radiotracer, we developed an in vivo glucagon receptor occupancy assay in mice expressing a human glucagon receptor in place of the endogenous mouse glucagon receptor (hGCGR mice). Using this assay, we first showed that the glucagon receptor is expressed predominantly in liver, to a much lesser extent in kidney, and is below detection in several other tissues/organs in the mice. We subsequently showed that, at 2 mg/kg body weight (mg/pk) dosed intraperitoneally (i.p.), peptidyl glucagon receptor antagonist des-His-glucagon binds to ∼78% of the hepatic glucagon receptor and blocks an exogenous glucagon-induced blood glucose elevation in the mice. Finally, we also showed that, at 10 and 30 mg/kg dosed orally (p.o.), compound A, a non-peptidyl small molecule glucagon receptor antagonist, occupied 65–70% of the hepatic glucagon receptor, and significantly diminished exogenous glucagon-induced blood glucose elevation in the mice. At 3 mg/kg, however, compound A occupied only ∼39% of the hepatic glucagon receptor and did not affect exogenous glucagon-induced blood glucose elevation in the mice. Taken together, the results confirmed previous reports that glucagon receptors are present predominantly in the liver, and provide the first direct evidence that peptidyl and non-peptidyl glucagon receptor antagonists bind to the hepatic glucagon receptor in vivo, and that at least 60% receptor occupancy correlates with the glucose lowering efficacy by the antagonists in vivo. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/j.ejphar.2004.08.023 |